summaryrefslogtreecommitdiff
path: root/src/haversine/libs
diff options
context:
space:
mode:
Diffstat (limited to 'src/haversine/libs')
-rw-r--r--src/haversine/libs/listing_065.cpp39
l---------src/haversine/libs/lr/lr.h1
l---------src/haversine/libs/lr/lr_macros.h1
l---------src/haversine/libs/lr/lr_platform.h1
l---------src/haversine/libs/lr/lr_types.h1
-rw-r--r--src/haversine/libs/pcg/pcg-advance-128.c64
-rw-r--r--src/haversine/libs/pcg/pcg-advance-16.c62
-rw-r--r--src/haversine/libs/pcg/pcg-advance-32.c62
-rw-r--r--src/haversine/libs/pcg/pcg-advance-64.c62
-rw-r--r--src/haversine/libs/pcg/pcg-advance-8.c62
-rw-r--r--src/haversine/libs/pcg/pcg-global-32.c56
-rw-r--r--src/haversine/libs/pcg/pcg-global-64.c59
-rw-r--r--src/haversine/libs/pcg/pcg-output-128.c64
-rw-r--r--src/haversine/libs/pcg/pcg-output-16.c60
-rw-r--r--src/haversine/libs/pcg/pcg-output-32.c62
-rw-r--r--src/haversine/libs/pcg/pcg-output-64.c70
-rw-r--r--src/haversine/libs/pcg/pcg-output-8.c60
-rw-r--r--src/haversine/libs/pcg/pcg-rngs-128.c337
-rw-r--r--src/haversine/libs/pcg/pcg-rngs-16.c183
-rw-r--r--src/haversine/libs/pcg/pcg-rngs-32.c187
-rw-r--r--src/haversine/libs/pcg/pcg-rngs-64.c232
-rw-r--r--src/haversine/libs/pcg/pcg-rngs-8.c128
-rw-r--r--src/haversine/libs/pcg/pcg.c16
-rw-r--r--src/haversine/libs/pcg/pcg_variants.h2213
-rw-r--r--src/haversine/libs/stb_sprintf.h1906
25 files changed, 0 insertions, 5988 deletions
diff --git a/src/haversine/libs/listing_065.cpp b/src/haversine/libs/listing_065.cpp
deleted file mode 100644
index 86e087c..0000000
--- a/src/haversine/libs/listing_065.cpp
+++ /dev/null
@@ -1,39 +0,0 @@
-#include <math.h>
-
-static f64 Square(f64 A)
-{
- f64 Result = (A*A);
- return Result;
-}
-
-static f64 RadiansFromDegrees(f64 Degrees)
-{
- f64 Result = 0.01745329251994329577 * Degrees;
- return Result;
-}
-
-// NOTE(casey): EarthRadius is generally expected to be 6372.8
-static f64 ReferenceHaversine(f64 X0, f64 Y0, f64 X1, f64 Y1, f64 EarthRadius)
-{
- /* NOTE(casey): This is not meant to be a "good" way to calculate the Haversine distance.
- Instead, it attempts to follow, as closely as possible, the formula used in the real-world
- question on which these homework exercises are loosely based.
- */
-
- f64 lat1 = Y0;
- f64 lat2 = Y1;
- f64 lon1 = X0;
- f64 lon2 = X1;
-
- f64 dLat = RadiansFromDegrees(lat2 - lat1);
- f64 dLon = RadiansFromDegrees(lon2 - lon1);
- lat1 = RadiansFromDegrees(lat1);
- lat2 = RadiansFromDegrees(lat2);
-
- f64 a = Square(sin(dLat/2.0)) + cos(lat1)*cos(lat2)*Square(sin(dLon/2));
- f64 c = 2.0*asin(sqrt(a));
-
- f64 Result = EarthRadius * c;
-
- return Result;
-}
diff --git a/src/haversine/libs/lr/lr.h b/src/haversine/libs/lr/lr.h
deleted file mode 120000
index 49fb375..0000000
--- a/src/haversine/libs/lr/lr.h
+++ /dev/null
@@ -1 +0,0 @@
-/home/aluc/proj/lr/lr.h \ No newline at end of file
diff --git a/src/haversine/libs/lr/lr_macros.h b/src/haversine/libs/lr/lr_macros.h
deleted file mode 120000
index 530249a..0000000
--- a/src/haversine/libs/lr/lr_macros.h
+++ /dev/null
@@ -1 +0,0 @@
-/home/aluc/proj/lr/lr_macros.h \ No newline at end of file
diff --git a/src/haversine/libs/lr/lr_platform.h b/src/haversine/libs/lr/lr_platform.h
deleted file mode 120000
index e387ee2..0000000
--- a/src/haversine/libs/lr/lr_platform.h
+++ /dev/null
@@ -1 +0,0 @@
-/home/aluc/proj/lr/lr_platform.h \ No newline at end of file
diff --git a/src/haversine/libs/lr/lr_types.h b/src/haversine/libs/lr/lr_types.h
deleted file mode 120000
index 6d2fa08..0000000
--- a/src/haversine/libs/lr/lr_types.h
+++ /dev/null
@@ -1 +0,0 @@
-/home/aluc/proj/lr/lr_types.h \ No newline at end of file
diff --git a/src/haversine/libs/pcg/pcg-advance-128.c b/src/haversine/libs/pcg/pcg-advance-128.c
deleted file mode 100644
index be72009..0000000
--- a/src/haversine/libs/pcg/pcg-advance-128.c
+++ /dev/null
@@ -1,64 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * Repetative C code is derived using C preprocessor metaprogramming
- * techniques.
- */
-
-#include "pcg_variants.h"
-
-/* Multi-step advance functions (jump-ahead, jump-back)
- *
- * The method used here is based on Brown, "Random Number Generation
- * with Arbitrary Stride,", Transactions of the American Nuclear
- * Society (Nov. 1994). The algorithm is very similar to fast
- * exponentiation.
- *
- * Even though delta is an unsigned integer, we can pass a
- * signed integer to go backwards, it just goes "the long way round".
- */
-
-#if PCG_HAS_128BIT_OPS
-pcg128_t pcg_advance_lcg_128(pcg128_t state, pcg128_t delta, pcg128_t cur_mult,
- pcg128_t cur_plus)
-{
- pcg128_t acc_mult = 1u;
- pcg128_t acc_plus = 0u;
- while (delta > 0) {
- if (delta & 1) {
- acc_mult *= cur_mult;
- acc_plus = acc_plus * cur_mult + cur_plus;
- }
- cur_plus = (cur_mult + 1) * cur_plus;
- cur_mult *= cur_mult;
- delta /= 2;
- }
- return acc_mult * state + acc_plus;
-}
-#endif
-
diff --git a/src/haversine/libs/pcg/pcg-advance-16.c b/src/haversine/libs/pcg/pcg-advance-16.c
deleted file mode 100644
index 11461d9..0000000
--- a/src/haversine/libs/pcg/pcg-advance-16.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * Repetative C code is derived using C preprocessor metaprogramming
- * techniques.
- */
-
-#include "pcg_variants.h"
-
-/* Multi-step advance functions (jump-ahead, jump-back)
- *
- * The method used here is based on Brown, "Random Number Generation
- * with Arbitrary Stride,", Transactions of the American Nuclear
- * Society (Nov. 1994). The algorithm is very similar to fast
- * exponentiation.
- *
- * Even though delta is an unsigned integer, we can pass a
- * signed integer to go backwards, it just goes "the long way round".
- */
-
-uint16_t pcg_advance_lcg_16(uint16_t state, uint16_t delta, uint16_t cur_mult,
- uint16_t cur_plus)
-{
- uint16_t acc_mult = 1u;
- uint16_t acc_plus = 0u;
- while (delta > 0) {
- if (delta & 1) {
- acc_mult *= cur_mult;
- acc_plus = acc_plus * cur_mult + cur_plus;
- }
- cur_plus = (cur_mult + 1) * cur_plus;
- cur_mult *= cur_mult;
- delta /= 2;
- }
- return acc_mult * state + acc_plus;
-}
-
diff --git a/src/haversine/libs/pcg/pcg-advance-32.c b/src/haversine/libs/pcg/pcg-advance-32.c
deleted file mode 100644
index 76f35fc..0000000
--- a/src/haversine/libs/pcg/pcg-advance-32.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * Repetative C code is derived using C preprocessor metaprogramming
- * techniques.
- */
-
-#include "pcg_variants.h"
-
-/* Multi-step advance functions (jump-ahead, jump-back)
- *
- * The method used here is based on Brown, "Random Number Generation
- * with Arbitrary Stride,", Transactions of the American Nuclear
- * Society (Nov. 1994). The algorithm is very similar to fast
- * exponentiation.
- *
- * Even though delta is an unsigned integer, we can pass a
- * signed integer to go backwards, it just goes "the long way round".
- */
-
-uint32_t pcg_advance_lcg_32(uint32_t state, uint32_t delta, uint32_t cur_mult,
- uint32_t cur_plus)
-{
- uint32_t acc_mult = 1u;
- uint32_t acc_plus = 0u;
- while (delta > 0) {
- if (delta & 1) {
- acc_mult *= cur_mult;
- acc_plus = acc_plus * cur_mult + cur_plus;
- }
- cur_plus = (cur_mult + 1) * cur_plus;
- cur_mult *= cur_mult;
- delta /= 2;
- }
- return acc_mult * state + acc_plus;
-}
-
diff --git a/src/haversine/libs/pcg/pcg-advance-64.c b/src/haversine/libs/pcg/pcg-advance-64.c
deleted file mode 100644
index 8210e75..0000000
--- a/src/haversine/libs/pcg/pcg-advance-64.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * Repetative C code is derived using C preprocessor metaprogramming
- * techniques.
- */
-
-#include "pcg_variants.h"
-
-/* Multi-step advance functions (jump-ahead, jump-back)
- *
- * The method used here is based on Brown, "Random Number Generation
- * with Arbitrary Stride,", Transactions of the American Nuclear
- * Society (Nov. 1994). The algorithm is very similar to fast
- * exponentiation.
- *
- * Even though delta is an unsigned integer, we can pass a
- * signed integer to go backwards, it just goes "the long way round".
- */
-
-uint64_t pcg_advance_lcg_64(uint64_t state, uint64_t delta, uint64_t cur_mult,
- uint64_t cur_plus)
-{
- uint64_t acc_mult = 1u;
- uint64_t acc_plus = 0u;
- while (delta > 0) {
- if (delta & 1) {
- acc_mult *= cur_mult;
- acc_plus = acc_plus * cur_mult + cur_plus;
- }
- cur_plus = (cur_mult + 1) * cur_plus;
- cur_mult *= cur_mult;
- delta /= 2;
- }
- return acc_mult * state + acc_plus;
-}
-
diff --git a/src/haversine/libs/pcg/pcg-advance-8.c b/src/haversine/libs/pcg/pcg-advance-8.c
deleted file mode 100644
index 8280958..0000000
--- a/src/haversine/libs/pcg/pcg-advance-8.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * Repetative C code is derived using C preprocessor metaprogramming
- * techniques.
- */
-
-#include "pcg_variants.h"
-
-/* Multi-step advance functions (jump-ahead, jump-back)
- *
- * The method used here is based on Brown, "Random Number Generation
- * with Arbitrary Stride,", Transactions of the American Nuclear
- * Society (Nov. 1994). The algorithm is very similar to fast
- * exponentiation.
- *
- * Even though delta is an unsigned integer, we can pass a
- * signed integer to go backwards, it just goes "the long way round".
- */
-
-uint8_t pcg_advance_lcg_8(uint8_t state, uint8_t delta, uint8_t cur_mult,
- uint8_t cur_plus)
-{
- uint8_t acc_mult = 1u;
- uint8_t acc_plus = 0u;
- while (delta > 0) {
- if (delta & 1) {
- acc_mult *= cur_mult;
- acc_plus = acc_plus * cur_mult + cur_plus;
- }
- cur_plus = (cur_mult + 1) * cur_plus;
- cur_mult *= cur_mult;
- delta /= 2;
- }
- return acc_mult * state + acc_plus;
-}
-
diff --git a/src/haversine/libs/pcg/pcg-global-32.c b/src/haversine/libs/pcg/pcg-global-32.c
deleted file mode 100644
index 8c18e48..0000000
--- a/src/haversine/libs/pcg/pcg-global-32.c
+++ /dev/null
@@ -1,56 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-static pcg32_random_t pcg32_global = PCG32_INITIALIZER;
-
-uint32_t pcg32_random()
-{
- return pcg32_random_r(&pcg32_global);
-}
-
-uint32_t pcg32_boundedrand(uint32_t bound)
-{
- return pcg32_boundedrand_r(&pcg32_global, bound);
-}
-
-void pcg32_srandom(uint64_t seed, uint64_t seq)
-{
- pcg32_srandom_r(&pcg32_global, seed, seq);
-}
-
-void pcg32_advance(uint64_t delta)
-{
- return pcg32_advance_r(&pcg32_global, delta);
-}
-
diff --git a/src/haversine/libs/pcg/pcg-global-64.c b/src/haversine/libs/pcg/pcg-global-64.c
deleted file mode 100644
index 26aa677..0000000
--- a/src/haversine/libs/pcg/pcg-global-64.c
+++ /dev/null
@@ -1,59 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-#if PCG_HAS_128BIT_OPS
-
-static pcg64_random_t pcg64_global = PCG64_INITIALIZER;
-
-uint64_t pcg64_random()
-{
- return pcg64_random_r(&pcg64_global);
-}
-
-uint64_t pcg64_boundedrand(uint64_t bound)
-{
- return pcg64_boundedrand_r(&pcg64_global, bound);
-}
-
-void pcg64_srandom(pcg128_t seed, pcg128_t seq)
-{
- pcg64_srandom_r(&pcg64_global, seed, seq);
-}
-
-void pcg64_advance(pcg128_t delta)
-{
- pcg64_advance_r(&pcg64_global, delta);
-}
-
-#endif
diff --git a/src/haversine/libs/pcg/pcg-output-128.c b/src/haversine/libs/pcg/pcg-output-128.c
deleted file mode 100644
index cb2142e..0000000
--- a/src/haversine/libs/pcg/pcg-output-128.c
+++ /dev/null
@@ -1,64 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/*
- * Rotate helper functions.
- */
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t pcg_rotr_128(pcg128_t value, unsigned int rot);
-#endif
-
-/*
- * Output functions. These are the core of the PCG generation scheme.
- */
-
-// XSH RS
-
-// XSH RR
-
-// RXS M XS
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t pcg_output_rxs_m_xs_128_128(pcg128_t state);
-#endif
-
-// XSL RR (only defined for >= 64 bits)
-
-// XSL RR RR (only defined for >= 64 bits)
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t pcg_output_xsl_rr_rr_128_128(pcg128_t state);
-#endif
-
diff --git a/src/haversine/libs/pcg/pcg-output-16.c b/src/haversine/libs/pcg/pcg-output-16.c
deleted file mode 100644
index c593f67..0000000
--- a/src/haversine/libs/pcg/pcg-output-16.c
+++ /dev/null
@@ -1,60 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/*
- * Rotate helper functions.
- */
-
-extern inline uint16_t pcg_rotr_16(uint16_t value, unsigned int rot);
-
-/*
- * Output functions. These are the core of the PCG generation scheme.
- */
-
-// XSH RS
-
-extern inline uint16_t pcg_output_xsh_rs_32_16(uint32_t state);
-
-// XSH RR
-
-extern inline uint16_t pcg_output_xsh_rr_32_16(uint32_t state);
-
-// RXS M XS
-
-extern inline uint16_t pcg_output_rxs_m_xs_16_16(uint16_t state);
-
-// XSL RR (only defined for >= 64 bits)
-
-// XSL RR RR (only defined for >= 64 bits)
-
diff --git a/src/haversine/libs/pcg/pcg-output-32.c b/src/haversine/libs/pcg/pcg-output-32.c
deleted file mode 100644
index e291c36..0000000
--- a/src/haversine/libs/pcg/pcg-output-32.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/*
- * Rotate helper functions.
- */
-
-extern inline uint32_t pcg_rotr_32(uint32_t value, unsigned int rot);
-
-/*
- * Output functions. These are the core of the PCG generation scheme.
- */
-
-// XSH RS
-
-extern inline uint32_t pcg_output_xsh_rs_64_32(uint64_t state);
-
-// XSH RR
-
-extern inline uint32_t pcg_output_xsh_rr_64_32(uint64_t state);
-
-// RXS M XS
-
-extern inline uint32_t pcg_output_rxs_m_xs_32_32(uint32_t state);
-
-// XSL RR (only defined for >= 64 bits)
-
-extern inline uint32_t pcg_output_xsl_rr_64_32(uint64_t state);
-
-// XSL RR RR (only defined for >= 64 bits)
-
diff --git a/src/haversine/libs/pcg/pcg-output-64.c b/src/haversine/libs/pcg/pcg-output-64.c
deleted file mode 100644
index 8c6b7e4..0000000
--- a/src/haversine/libs/pcg/pcg-output-64.c
+++ /dev/null
@@ -1,70 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/*
- * Rotate helper functions.
- */
-
-extern inline uint64_t pcg_rotr_64(uint64_t value, unsigned int rot);
-
-/*
- * Output functions. These are the core of the PCG generation scheme.
- */
-
-// XSH RS
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t pcg_output_xsh_rs_128_64(pcg128_t state);
-#endif
-
-// XSH RR
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t pcg_output_xsh_rr_128_64(pcg128_t state);
-#endif
-
-// RXS M XS
-
-extern inline uint64_t pcg_output_rxs_m_xs_64_64(uint64_t state);
-
-// XSL RR (only defined for >= 64 bits)
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t pcg_output_xsl_rr_128_64(pcg128_t state);
-#endif
-
-// XSL RR RR (only defined for >= 64 bits)
-
-extern inline uint64_t pcg_output_xsl_rr_rr_64_64(uint64_t state);
-
diff --git a/src/haversine/libs/pcg/pcg-output-8.c b/src/haversine/libs/pcg/pcg-output-8.c
deleted file mode 100644
index 83fe449..0000000
--- a/src/haversine/libs/pcg/pcg-output-8.c
+++ /dev/null
@@ -1,60 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/*
- * Rotate helper functions.
- */
-
-extern inline uint8_t pcg_rotr_8(uint8_t value, unsigned int rot);
-
-/*
- * Output functions. These are the core of the PCG generation scheme.
- */
-
-// XSH RS
-
-extern inline uint8_t pcg_output_xsh_rs_16_8(uint16_t state);
-
-// XSH RR
-
-extern inline uint8_t pcg_output_xsh_rr_16_8(uint16_t state);
-
-// RXS M XS
-
-extern inline uint8_t pcg_output_rxs_m_xs_8_8(uint8_t state);
-
-// XSL RR (only defined for >= 64 bits)
-
-// XSL RR RR (only defined for >= 64 bits)
-
diff --git a/src/haversine/libs/pcg/pcg-rngs-128.c b/src/haversine/libs/pcg/pcg-rngs-128.c
deleted file mode 100644
index 8023589..0000000
--- a/src/haversine/libs/pcg/pcg-rngs-128.c
+++ /dev/null
@@ -1,337 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/* Functions to advance the underlying LCG, one version for each size and
- * each style. These functions are considered semi-private. There is rarely
- * a good reason to call them directly.
- */
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_oneseq_128_step_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_oneseq_128_advance_r(struct pcg_state_128* rng,
- pcg128_t delta);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_mcg_128_step_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_mcg_128_advance_r(struct pcg_state_128* rng,
- pcg128_t delta);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_unique_128_step_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_unique_128_advance_r(struct pcg_state_128* rng,
- pcg128_t delta);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_setseq_128_step_r(struct pcg_state_setseq_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_setseq_128_advance_r(struct pcg_state_setseq_128* rng,
- pcg128_t delta);
-#endif
-
-/* Functions to seed the RNG state, one version for each size and each
- * style. Unlike the step functions, regular users can and should call
- * these functions.
- */
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_oneseq_128_srandom_r(struct pcg_state_128* rng,
- pcg128_t initstate);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_mcg_128_srandom_r(struct pcg_state_128* rng,
- pcg128_t initstate);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_unique_128_srandom_r(struct pcg_state_128* rng,
- pcg128_t initstate);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline void pcg_setseq_128_srandom_r(struct pcg_state_setseq_128* rng,
- pcg128_t initstate,
- pcg128_t initseq);
-#endif
-
-/* Now, finally we create each of the individual generators. We provide
- * a random_r function that provides a random number of the appropriate
- * type (using the full range of the type) and a boundedrand_r version
- * that provides
- *
- * Implementation notes for boundedrand_r:
- *
- * To avoid bias, we need to make the range of the RNG a multiple of
- * bound, which we do by dropping output less than a threshold.
- * Let's consider a 32-bit case... A naive scheme to calculate the
- * threshold would be to do
- *
- * uint32_t threshold = 0x100000000ull % bound;
- *
- * but 64-bit div/mod is slower than 32-bit div/mod (especially on
- * 32-bit platforms). In essence, we do
- *
- * uint32_t threshold = (0x100000000ull-bound) % bound;
- *
- * because this version will calculate the same modulus, but the LHS
- * value is less than 2^32.
- *
- * (Note that using modulo is only wise for good RNGs, poorer RNGs
- * such as raw LCGs do better using a technique based on division.)
- * Empricical tests show that division is preferable to modulus for
- * reducting the range of an RNG. It's faster, and sometimes it can
- * even be statistically prefereable.
- */
-
-/* Generation functions for XSH RS */
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_oneseq_128_xsh_rs_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_oneseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_unique_128_xsh_rs_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_unique_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_setseq_128_xsh_rs_64_random_r(struct pcg_state_setseq_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_setseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_setseq_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_mcg_128_xsh_rs_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_mcg_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng, uint64_t bound);
-#endif
-
-/* Generation functions for XSH RR */
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_oneseq_128_xsh_rr_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_oneseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_unique_128_xsh_rr_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_unique_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_setseq_128_xsh_rr_64_random_r(struct pcg_state_setseq_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_setseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_mcg_128_xsh_rr_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_mcg_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng, uint64_t bound);
-#endif
-
-/* Generation functions for RXS M XS (no MCG versions because they
- * don't make sense when you want to use the entire state)
- */
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_oneseq_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_oneseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng,
- pcg128_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_unique_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_unique_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng,
- pcg128_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_setseq_128_rxs_m_xs_128_random_r(struct pcg_state_setseq_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_setseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_setseq_128* rng,
- pcg128_t bound);
-#endif
-
-/* Generation functions for XSL RR (only defined for "large" types) */
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_oneseq_128_xsl_rr_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_oneseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_unique_128_xsl_rr_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_unique_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_setseq_128_xsl_rr_64_random_r(struct pcg_state_setseq_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_setseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng,
- uint64_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_mcg_128_xsl_rr_64_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline uint64_t
-pcg_mcg_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng, uint64_t bound);
-#endif
-
-/* Generation functions for XSL RR RR (only defined for "large" types) */
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_oneseq_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_oneseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng,
- pcg128_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_unique_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_unique_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng,
- pcg128_t bound);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_setseq_128_xsl_rr_rr_128_random_r(struct pcg_state_setseq_128* rng);
-#endif
-
-#if PCG_HAS_128BIT_OPS
-extern inline pcg128_t
-pcg_setseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_setseq_128* rng,
- pcg128_t bound);
-#endif
-
diff --git a/src/haversine/libs/pcg/pcg-rngs-16.c b/src/haversine/libs/pcg/pcg-rngs-16.c
deleted file mode 100644
index 6d4e9b6..0000000
--- a/src/haversine/libs/pcg/pcg-rngs-16.c
+++ /dev/null
@@ -1,183 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/* Functions to advance the underlying LCG, one version for each size and
- * each style. These functions are considered semi-private. There is rarely
- * a good reason to call them directly.
- */
-
-extern inline void pcg_oneseq_16_step_r(struct pcg_state_16* rng);
-
-extern inline void pcg_oneseq_16_advance_r(struct pcg_state_16* rng,
- uint16_t delta);
-
-extern inline void pcg_mcg_16_step_r(struct pcg_state_16* rng);
-
-extern inline void pcg_mcg_16_advance_r(struct pcg_state_16* rng,
- uint16_t delta);
-
-extern inline void pcg_unique_16_step_r(struct pcg_state_16* rng);
-
-extern inline void pcg_unique_16_advance_r(struct pcg_state_16* rng,
- uint16_t delta);
-
-extern inline void pcg_setseq_16_step_r(struct pcg_state_setseq_16* rng);
-
-extern inline void pcg_setseq_16_advance_r(struct pcg_state_setseq_16* rng,
- uint16_t delta);
-
-/* Functions to seed the RNG state, one version for each size and each
- * style. Unlike the step functions, regular users can and should call
- * these functions.
- */
-
-extern inline void pcg_oneseq_16_srandom_r(struct pcg_state_16* rng,
- uint16_t initstate);
-
-extern inline void pcg_mcg_16_srandom_r(struct pcg_state_16* rng,
- uint16_t initstate);
-
-extern inline void pcg_unique_16_srandom_r(struct pcg_state_16* rng,
- uint16_t initstate);
-
-extern inline void pcg_setseq_16_srandom_r(struct pcg_state_setseq_16* rng,
- uint16_t initstate,
- uint16_t initseq);
-
-/* Now, finally we create each of the individual generators. We provide
- * a random_r function that provides a random number of the appropriate
- * type (using the full range of the type) and a boundedrand_r version
- * that provides
- *
- * Implementation notes for boundedrand_r:
- *
- * To avoid bias, we need to make the range of the RNG a multiple of
- * bound, which we do by dropping output less than a threshold.
- * Let's consider a 32-bit case... A naive scheme to calculate the
- * threshold would be to do
- *
- * uint32_t threshold = 0x100000000ull % bound;
- *
- * but 64-bit div/mod is slower than 32-bit div/mod (especially on
- * 32-bit platforms). In essence, we do
- *
- * uint32_t threshold = (0x100000000ull-bound) % bound;
- *
- * because this version will calculate the same modulus, but the LHS
- * value is less than 2^32.
- *
- * (Note that using modulo is only wise for good RNGs, poorer RNGs
- * such as raw LCGs do better using a technique based on division.)
- * Empricical tests show that division is preferable to modulus for
- * reducting the range of an RNG. It's faster, and sometimes it can
- * even be statistically prefereable.
- */
-
-/* Generation functions for XSH RS */
-
-extern inline uint8_t pcg_oneseq_16_xsh_rs_8_random_r(struct pcg_state_16* rng);
-
-extern inline uint8_t
-pcg_oneseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
-
-extern inline uint8_t pcg_unique_16_xsh_rs_8_random_r(struct pcg_state_16* rng);
-
-extern inline uint8_t
-pcg_unique_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
-
-extern inline uint8_t
-pcg_setseq_16_xsh_rs_8_random_r(struct pcg_state_setseq_16* rng);
-
-extern inline uint8_t
-pcg_setseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_setseq_16* rng,
- uint8_t bound);
-
-extern inline uint8_t pcg_mcg_16_xsh_rs_8_random_r(struct pcg_state_16* rng);
-
-extern inline uint8_t
-pcg_mcg_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
-
-/* Generation functions for XSH RR */
-
-extern inline uint8_t pcg_oneseq_16_xsh_rr_8_random_r(struct pcg_state_16* rng);
-
-extern inline uint8_t
-pcg_oneseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
-
-extern inline uint8_t pcg_unique_16_xsh_rr_8_random_r(struct pcg_state_16* rng);
-
-extern inline uint8_t
-pcg_unique_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
-
-extern inline uint8_t
-pcg_setseq_16_xsh_rr_8_random_r(struct pcg_state_setseq_16* rng);
-
-extern inline uint8_t
-pcg_setseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_setseq_16* rng,
- uint8_t bound);
-
-extern inline uint8_t pcg_mcg_16_xsh_rr_8_random_r(struct pcg_state_16* rng);
-
-extern inline uint8_t
-pcg_mcg_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
-
-/* Generation functions for RXS M XS (no MCG versions because they
- * don't make sense when you want to use the entire state)
- */
-
-extern inline uint16_t
-pcg_oneseq_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng);
-
-extern inline uint16_t
-pcg_oneseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng,
- uint16_t bound);
-
-extern inline uint16_t
-pcg_unique_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng);
-
-extern inline uint16_t
-pcg_unique_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng,
- uint16_t bound);
-
-extern inline uint16_t
-pcg_setseq_16_rxs_m_xs_16_random_r(struct pcg_state_setseq_16* rng);
-
-extern inline uint16_t
-pcg_setseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_setseq_16* rng,
- uint16_t bound);
-
-/* Generation functions for XSL RR (only defined for "large" types) */
-
-/* Generation functions for XSL RR RR (only defined for "large" types) */
-
diff --git a/src/haversine/libs/pcg/pcg-rngs-32.c b/src/haversine/libs/pcg/pcg-rngs-32.c
deleted file mode 100644
index 1c8da7e..0000000
--- a/src/haversine/libs/pcg/pcg-rngs-32.c
+++ /dev/null
@@ -1,187 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/* Functions to advance the underlying LCG, one version for each size and
- * each style. These functions are considered semi-private. There is rarely
- * a good reason to call them directly.
- */
-
-extern inline void pcg_oneseq_32_step_r(struct pcg_state_32* rng);
-
-extern inline void pcg_oneseq_32_advance_r(struct pcg_state_32* rng,
- uint32_t delta);
-
-extern inline void pcg_mcg_32_step_r(struct pcg_state_32* rng);
-
-extern inline void pcg_mcg_32_advance_r(struct pcg_state_32* rng,
- uint32_t delta);
-
-extern inline void pcg_unique_32_step_r(struct pcg_state_32* rng);
-
-extern inline void pcg_unique_32_advance_r(struct pcg_state_32* rng,
- uint32_t delta);
-
-extern inline void pcg_setseq_32_step_r(struct pcg_state_setseq_32* rng);
-
-extern inline void pcg_setseq_32_advance_r(struct pcg_state_setseq_32* rng,
- uint32_t delta);
-
-/* Functions to seed the RNG state, one version for each size and each
- * style. Unlike the step functions, regular users can and should call
- * these functions.
- */
-
-extern inline void pcg_oneseq_32_srandom_r(struct pcg_state_32* rng,
- uint32_t initstate);
-
-extern inline void pcg_mcg_32_srandom_r(struct pcg_state_32* rng,
- uint32_t initstate);
-
-extern inline void pcg_unique_32_srandom_r(struct pcg_state_32* rng,
- uint32_t initstate);
-
-extern inline void pcg_setseq_32_srandom_r(struct pcg_state_setseq_32* rng,
- uint32_t initstate,
- uint32_t initseq);
-
-/* Now, finally we create each of the individual generators. We provide
- * a random_r function that provides a random number of the appropriate
- * type (using the full range of the type) and a boundedrand_r version
- * that provides
- *
- * Implementation notes for boundedrand_r:
- *
- * To avoid bias, we need to make the range of the RNG a multiple of
- * bound, which we do by dropping output less than a threshold.
- * Let's consider a 32-bit case... A naive scheme to calculate the
- * threshold would be to do
- *
- * uint32_t threshold = 0x100000000ull % bound;
- *
- * but 64-bit div/mod is slower than 32-bit div/mod (especially on
- * 32-bit platforms). In essence, we do
- *
- * uint32_t threshold = (0x100000000ull-bound) % bound;
- *
- * because this version will calculate the same modulus, but the LHS
- * value is less than 2^32.
- *
- * (Note that using modulo is only wise for good RNGs, poorer RNGs
- * such as raw LCGs do better using a technique based on division.)
- * Empricical tests show that division is preferable to modulus for
- * reducting the range of an RNG. It's faster, and sometimes it can
- * even be statistically prefereable.
- */
-
-/* Generation functions for XSH RS */
-
-extern inline uint16_t
-pcg_oneseq_32_xsh_rs_16_random_r(struct pcg_state_32* rng);
-
-extern inline uint16_t
-pcg_oneseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
-
-extern inline uint16_t
-pcg_unique_32_xsh_rs_16_random_r(struct pcg_state_32* rng);
-
-extern inline uint16_t
-pcg_unique_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
-
-extern inline uint16_t
-pcg_setseq_32_xsh_rs_16_random_r(struct pcg_state_setseq_32* rng);
-
-extern inline uint16_t
-pcg_setseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_setseq_32* rng,
- uint16_t bound);
-
-extern inline uint16_t pcg_mcg_32_xsh_rs_16_random_r(struct pcg_state_32* rng);
-
-extern inline uint16_t
-pcg_mcg_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
-
-/* Generation functions for XSH RR */
-
-extern inline uint16_t
-pcg_oneseq_32_xsh_rr_16_random_r(struct pcg_state_32* rng);
-
-extern inline uint16_t
-pcg_oneseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
-
-extern inline uint16_t
-pcg_unique_32_xsh_rr_16_random_r(struct pcg_state_32* rng);
-
-extern inline uint16_t
-pcg_unique_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
-
-extern inline uint16_t
-pcg_setseq_32_xsh_rr_16_random_r(struct pcg_state_setseq_32* rng);
-
-extern inline uint16_t
-pcg_setseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_setseq_32* rng,
- uint16_t bound);
-
-extern inline uint16_t pcg_mcg_32_xsh_rr_16_random_r(struct pcg_state_32* rng);
-
-extern inline uint16_t
-pcg_mcg_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
-
-/* Generation functions for RXS M XS (no MCG versions because they
- * don't make sense when you want to use the entire state)
- */
-
-extern inline uint32_t
-pcg_oneseq_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng);
-
-extern inline uint32_t
-pcg_oneseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng,
- uint32_t bound);
-
-extern inline uint32_t
-pcg_unique_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng);
-
-extern inline uint32_t
-pcg_unique_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng,
- uint32_t bound);
-
-extern inline uint32_t
-pcg_setseq_32_rxs_m_xs_32_random_r(struct pcg_state_setseq_32* rng);
-
-extern inline uint32_t
-pcg_setseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_setseq_32* rng,
- uint32_t bound);
-
-/* Generation functions for XSL RR (only defined for "large" types) */
-
-/* Generation functions for XSL RR RR (only defined for "large" types) */
-
diff --git a/src/haversine/libs/pcg/pcg-rngs-64.c b/src/haversine/libs/pcg/pcg-rngs-64.c
deleted file mode 100644
index cc0ff2c..0000000
--- a/src/haversine/libs/pcg/pcg-rngs-64.c
+++ /dev/null
@@ -1,232 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/* Functions to advance the underlying LCG, one version for each size and
- * each style. These functions are considered semi-private. There is rarely
- * a good reason to call them directly.
- */
-
-extern inline void pcg_oneseq_64_step_r(struct pcg_state_64* rng);
-
-extern inline void pcg_oneseq_64_advance_r(struct pcg_state_64* rng,
- uint64_t delta);
-
-extern inline void pcg_mcg_64_step_r(struct pcg_state_64* rng);
-
-extern inline void pcg_mcg_64_advance_r(struct pcg_state_64* rng,
- uint64_t delta);
-
-extern inline void pcg_unique_64_step_r(struct pcg_state_64* rng);
-
-extern inline void pcg_unique_64_advance_r(struct pcg_state_64* rng,
- uint64_t delta);
-
-extern inline void pcg_setseq_64_step_r(struct pcg_state_setseq_64* rng);
-
-extern inline void pcg_setseq_64_advance_r(struct pcg_state_setseq_64* rng,
- uint64_t delta);
-
-/* Functions to seed the RNG state, one version for each size and each
- * style. Unlike the step functions, regular users can and should call
- * these functions.
- */
-
-extern inline void pcg_oneseq_64_srandom_r(struct pcg_state_64* rng,
- uint64_t initstate);
-
-extern inline void pcg_mcg_64_srandom_r(struct pcg_state_64* rng,
- uint64_t initstate);
-
-extern inline void pcg_unique_64_srandom_r(struct pcg_state_64* rng,
- uint64_t initstate);
-
-extern inline void pcg_setseq_64_srandom_r(struct pcg_state_setseq_64* rng,
- uint64_t initstate,
- uint64_t initseq);
-
-/* Now, finally we create each of the individual generators. We provide
- * a random_r function that provides a random number of the appropriate
- * type (using the full range of the type) and a boundedrand_r version
- * that provides
- *
- * Implementation notes for boundedrand_r:
- *
- * To avoid bias, we need to make the range of the RNG a multiple of
- * bound, which we do by dropping output less than a threshold.
- * Let's consider a 32-bit case... A naive scheme to calculate the
- * threshold would be to do
- *
- * uint32_t threshold = 0x100000000ull % bound;
- *
- * but 64-bit div/mod is slower than 32-bit div/mod (especially on
- * 32-bit platforms). In essence, we do
- *
- * uint32_t threshold = (0x100000000ull-bound) % bound;
- *
- * because this version will calculate the same modulus, but the LHS
- * value is less than 2^32.
- *
- * (Note that using modulo is only wise for good RNGs, poorer RNGs
- * such as raw LCGs do better using a technique based on division.)
- * Empricical tests show that division is preferable to modulus for
- * reducting the range of an RNG. It's faster, and sometimes it can
- * even be statistically prefereable.
- */
-
-/* Generation functions for XSH RS */
-
-extern inline uint32_t
-pcg_oneseq_64_xsh_rs_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_oneseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-extern inline uint32_t
-pcg_unique_64_xsh_rs_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_unique_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-extern inline uint32_t
-pcg_setseq_64_xsh_rs_32_random_r(struct pcg_state_setseq_64* rng);
-
-extern inline uint32_t
-pcg_setseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint32_t bound);
-
-extern inline uint32_t pcg_mcg_64_xsh_rs_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_mcg_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-/* Generation functions for XSH RR */
-
-extern inline uint32_t
-pcg_oneseq_64_xsh_rr_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_oneseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-extern inline uint32_t
-pcg_unique_64_xsh_rr_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_unique_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-extern inline uint32_t
-pcg_setseq_64_xsh_rr_32_random_r(struct pcg_state_setseq_64* rng);
-
-extern inline uint32_t
-pcg_setseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint32_t bound);
-
-extern inline uint32_t pcg_mcg_64_xsh_rr_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_mcg_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-/* Generation functions for RXS M XS (no MCG versions because they
- * don't make sense when you want to use the entire state)
- */
-
-extern inline uint64_t
-pcg_oneseq_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng);
-
-extern inline uint64_t
-pcg_oneseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng,
- uint64_t bound);
-
-extern inline uint64_t
-pcg_unique_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng);
-
-extern inline uint64_t
-pcg_unique_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng,
- uint64_t bound);
-
-extern inline uint64_t
-pcg_setseq_64_rxs_m_xs_64_random_r(struct pcg_state_setseq_64* rng);
-
-extern inline uint64_t
-pcg_setseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint64_t bound);
-
-/* Generation functions for XSL RR (only defined for "large" types) */
-
-extern inline uint32_t
-pcg_oneseq_64_xsl_rr_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_oneseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-extern inline uint32_t
-pcg_unique_64_xsl_rr_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_unique_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-extern inline uint32_t
-pcg_setseq_64_xsl_rr_32_random_r(struct pcg_state_setseq_64* rng);
-
-extern inline uint32_t
-pcg_setseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint32_t bound);
-
-extern inline uint32_t pcg_mcg_64_xsl_rr_32_random_r(struct pcg_state_64* rng);
-
-extern inline uint32_t
-pcg_mcg_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
-
-/* Generation functions for XSL RR RR (only defined for "large" types) */
-
-extern inline uint64_t
-pcg_oneseq_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng);
-
-extern inline uint64_t
-pcg_oneseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng,
- uint64_t bound);
-
-extern inline uint64_t
-pcg_unique_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng);
-
-extern inline uint64_t
-pcg_unique_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng,
- uint64_t bound);
-
-extern inline uint64_t
-pcg_setseq_64_xsl_rr_rr_64_random_r(struct pcg_state_setseq_64* rng);
-
-extern inline uint64_t
-pcg_setseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint64_t bound);
-
diff --git a/src/haversine/libs/pcg/pcg-rngs-8.c b/src/haversine/libs/pcg/pcg-rngs-8.c
deleted file mode 100644
index 8779aac..0000000
--- a/src/haversine/libs/pcg/pcg-rngs-8.c
+++ /dev/null
@@ -1,128 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * The contents of this file were mechanically derived from pcg_variants.h
- * (every inline function defined there gets an exern declaration here).
- */
-
-#include "pcg_variants.h"
-
-/* Functions to advance the underlying LCG, one version for each size and
- * each style. These functions are considered semi-private. There is rarely
- * a good reason to call them directly.
- */
-
-extern inline void pcg_oneseq_8_step_r(struct pcg_state_8* rng);
-
-extern inline void pcg_oneseq_8_advance_r(struct pcg_state_8* rng,
- uint8_t delta);
-
-extern inline void pcg_mcg_8_step_r(struct pcg_state_8* rng);
-
-extern inline void pcg_mcg_8_advance_r(struct pcg_state_8* rng, uint8_t delta);
-
-extern inline void pcg_unique_8_step_r(struct pcg_state_8* rng);
-
-extern inline void pcg_unique_8_advance_r(struct pcg_state_8* rng,
- uint8_t delta);
-
-extern inline void pcg_setseq_8_step_r(struct pcg_state_setseq_8* rng);
-
-extern inline void pcg_setseq_8_advance_r(struct pcg_state_setseq_8* rng,
- uint8_t delta);
-
-/* Functions to seed the RNG state, one version for each size and each
- * style. Unlike the step functions, regular users can and should call
- * these functions.
- */
-
-extern inline void pcg_oneseq_8_srandom_r(struct pcg_state_8* rng,
- uint8_t initstate);
-
-extern inline void pcg_mcg_8_srandom_r(struct pcg_state_8* rng,
- uint8_t initstate);
-
-extern inline void pcg_unique_8_srandom_r(struct pcg_state_8* rng,
- uint8_t initstate);
-
-extern inline void pcg_setseq_8_srandom_r(struct pcg_state_setseq_8* rng,
- uint8_t initstate, uint8_t initseq);
-
-/* Now, finally we create each of the individual generators. We provide
- * a random_r function that provides a random number of the appropriate
- * type (using the full range of the type) and a boundedrand_r version
- * that provides
- *
- * Implementation notes for boundedrand_r:
- *
- * To avoid bias, we need to make the range of the RNG a multiple of
- * bound, which we do by dropping output less than a threshold.
- * Let's consider a 32-bit case... A naive scheme to calculate the
- * threshold would be to do
- *
- * uint32_t threshold = 0x100000000ull % bound;
- *
- * but 64-bit div/mod is slower than 32-bit div/mod (especially on
- * 32-bit platforms). In essence, we do
- *
- * uint32_t threshold = (0x100000000ull-bound) % bound;
- *
- * because this version will calculate the same modulus, but the LHS
- * value is less than 2^32.
- *
- * (Note that using modulo is only wise for good RNGs, poorer RNGs
- * such as raw LCGs do better using a technique based on division.)
- * Empricical tests show that division is preferable to modulus for
- * reducting the range of an RNG. It's faster, and sometimes it can
- * even be statistically prefereable.
- */
-
-/* Generation functions for XSH RS */
-
-/* Generation functions for XSH RR */
-
-/* Generation functions for RXS M XS (no MCG versions because they
- * don't make sense when you want to use the entire state)
- */
-
-extern inline uint8_t pcg_oneseq_8_rxs_m_xs_8_random_r(struct pcg_state_8* rng);
-
-extern inline uint8_t
-pcg_oneseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_8* rng, uint8_t bound);
-
-extern inline uint8_t
-pcg_setseq_8_rxs_m_xs_8_random_r(struct pcg_state_setseq_8* rng);
-
-extern inline uint8_t
-pcg_setseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_setseq_8* rng,
- uint8_t bound);
-
-/* Generation functions for XSL RR (only defined for "large" types) */
-
-/* Generation functions for XSL RR RR (only defined for "large" types) */
-
diff --git a/src/haversine/libs/pcg/pcg.c b/src/haversine/libs/pcg/pcg.c
deleted file mode 100644
index cf29e6d..0000000
--- a/src/haversine/libs/pcg/pcg.c
+++ /dev/null
@@ -1,16 +0,0 @@
-#include "pcg_variants.h"
-#include "pcg-advance-128.c"
-#include "pcg-advance-16.c"
-#include "pcg-advance-32.c"
-#include "pcg-advance-64.c"
-#include "pcg-advance-8.c"
-#include "pcg-output-128.c"
-#include "pcg-output-16.c"
-#include "pcg-output-32.c"
-#include "pcg-output-64.c"
-#include "pcg-output-8.c"
-#include "pcg-rngs-128.c"
-#include "pcg-rngs-16.c"
-#include "pcg-rngs-32.c"
-#include "pcg-rngs-64.c"
-#include "pcg-rngs-8.c"
diff --git a/src/haversine/libs/pcg/pcg_variants.h b/src/haversine/libs/pcg/pcg_variants.h
deleted file mode 100644
index 83edae8..0000000
--- a/src/haversine/libs/pcg/pcg_variants.h
+++ /dev/null
@@ -1,2213 +0,0 @@
-/*
- * PCG Random Number Generation for C.
- *
- * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * For additional information about the PCG random number generation scheme,
- * including its license and other licensing options, visit
- *
- * http://www.pcg-random.org
- */
-
-/*
- * This code is derived from the canonical C++ PCG implementation, which
- * has many additional features and is preferable if you can use C++ in
- * your project.
- *
- * Much of the derivation was performed mechanically. In particular, the
- * output functions were generated by compiling the C++ output functions
- * into LLVM bitcode and then transforming that using the LLVM C backend
- * (from https://github.com/draperlaboratory/llvm-cbe), and then
- * postprocessing and hand editing the output.
- *
- * Much of the remaining code was generated by C-preprocessor metaprogramming.
- */
-
-#ifndef PCG_VARIANTS_H_INCLUDED
-#define PCG_VARIANTS_H_INCLUDED 1
-
-#include <inttypes.h>
-
-#if __SIZEOF_INT128__
-typedef __uint128_t pcg128_t;
-#define PCG_128BIT_CONSTANT(high,low) \
-((((pcg128_t)high) << 64) + low)
-#define PCG_HAS_128BIT_OPS 1
-#else
-#error "non"
-#endif
-
-#if __GNUC_GNU_INLINE__ && !defined(__cplusplus)
-#error Nonstandard GNU inlining semanatics. Compile with -std=c99 or better.
-// We could instead use macros PCG_INLINE and PCG_EXTERN_INLINE
-// but better to just reject ancient C code.
-#endif
-
-#if __cplusplus
-extern "C" {
-#endif
-
- /*
- * Rotate helper functions.
- */
-
- inline uint8_t pcg_rotr_8(uint8_t value, unsigned int rot)
- {
- /* Unfortunately, clang is kinda pathetic when it comes to properly
- * recognizing idiomatic rotate code, so for clang we actually provide
- * assembler directives (enabled with PCG_USE_INLINE_ASM). Boo, hiss.
- */
-#if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__)
- asm ("rorb %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
- return value;
-#else
- return (value >> rot) | (value << ((- rot) & 7));
-#endif
- }
-
- inline uint16_t pcg_rotr_16(uint16_t value, unsigned int rot)
- {
-#if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__)
- asm ("rorw %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
- return value;
-#else
- return (value >> rot) | (value << ((- rot) & 15));
-#endif
- }
-
- inline uint32_t pcg_rotr_32(uint32_t value, unsigned int rot)
- {
-#if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__)
- asm ("rorl %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
- return value;
-#else
- return (value >> rot) | (value << ((- rot) & 31));
-#endif
- }
-
- inline uint64_t pcg_rotr_64(uint64_t value, unsigned int rot)
- {
-#if 0 && PCG_USE_INLINE_ASM && __clang__ && __x86_64__
- // For whatever reason, clang actually *does* generator rotq by
- // itself, so we don't need this code.
- asm ("rorq %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
- return value;
-#else
- return (value >> rot) | (value << ((- rot) & 63));
-#endif
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t pcg_rotr_128(pcg128_t value, unsigned int rot)
- {
- return (value >> rot) | (value << ((- rot) & 127));
- }
-#endif
-
- /*
- * Output functions. These are the core of the PCG generation scheme.
- */
-
- // XSH RS
-
- inline uint8_t pcg_output_xsh_rs_16_8(uint16_t state)
- {
- return (uint8_t)(((state >> 7u) ^ state) >> ((state >> 14u) + 3u));
- }
-
- inline uint16_t pcg_output_xsh_rs_32_16(uint32_t state)
- {
- return (uint16_t)(((state >> 11u) ^ state) >> ((state >> 30u) + 11u));
- }
-
- inline uint32_t pcg_output_xsh_rs_64_32(uint64_t state)
- {
-
- return (uint32_t)(((state >> 22u) ^ state) >> ((state >> 61u) + 22u));
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_output_xsh_rs_128_64(pcg128_t state)
- {
- return (uint64_t)(((state >> 43u) ^ state) >> ((state >> 124u) + 45u));
- }
-#endif
-
- // XSH RR
-
- inline uint8_t pcg_output_xsh_rr_16_8(uint16_t state)
- {
- return pcg_rotr_8(((state >> 5u) ^ state) >> 5u, state >> 13u);
- }
-
- inline uint16_t pcg_output_xsh_rr_32_16(uint32_t state)
- {
- return pcg_rotr_16(((state >> 10u) ^ state) >> 12u, state >> 28u);
- }
-
- inline uint32_t pcg_output_xsh_rr_64_32(uint64_t state)
- {
- return pcg_rotr_32(((state >> 18u) ^ state) >> 27u, state >> 59u);
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_output_xsh_rr_128_64(pcg128_t state)
- {
- return pcg_rotr_64(((state >> 29u) ^ state) >> 58u, state >> 122u);
- }
-#endif
-
- // RXS M XS
-
- inline uint8_t pcg_output_rxs_m_xs_8_8(uint8_t state)
- {
- uint8_t word = ((state >> ((state >> 6u) + 2u)) ^ state) * 217u;
- return (word >> 6u) ^ word;
- }
-
- inline uint16_t pcg_output_rxs_m_xs_16_16(uint16_t state)
- {
- uint16_t word = ((state >> ((state >> 13u) + 3u)) ^ state) * 62169u;
- return (word >> 11u) ^ word;
- }
-
- inline uint32_t pcg_output_rxs_m_xs_32_32(uint32_t state)
- {
- uint32_t word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
- return (word >> 22u) ^ word;
- }
-
- inline uint64_t pcg_output_rxs_m_xs_64_64(uint64_t state)
- {
- uint64_t word = ((state >> ((state >> 59u) + 5u)) ^ state)
- * 12605985483714917081ull;
- return (word >> 43u) ^ word;
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t pcg_output_rxs_m_xs_128_128(pcg128_t state)
- {
- pcg128_t word = ((state >> ((state >> 122u) + 6u)) ^ state)
- * (PCG_128BIT_CONSTANT(17766728186571221404ULL,
- 12605985483714917081ULL));
- // 327738287884841127335028083622016905945
- return (word >> 86u) ^ word;
- }
-#endif
-
- // XSL RR (only defined for >= 64 bits)
-
- inline uint32_t pcg_output_xsl_rr_64_32(uint64_t state)
- {
- return pcg_rotr_32(((uint32_t)(state >> 32u)) ^ (uint32_t)state,
- state >> 59u);
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_output_xsl_rr_128_64(pcg128_t state)
- {
- return pcg_rotr_64(((uint64_t)(state >> 64u)) ^ (uint64_t)state,
- state >> 122u);
- }
-#endif
-
- // XSL RR RR (only defined for >= 64 bits)
-
- inline uint64_t pcg_output_xsl_rr_rr_64_64(uint64_t state)
- {
- uint32_t rot1 = (uint32_t)(state >> 59u);
- uint32_t high = (uint32_t)(state >> 32u);
- uint32_t low = (uint32_t)state;
- uint32_t xored = high ^ low;
- uint32_t newlow = pcg_rotr_32(xored, rot1);
- uint32_t newhigh = pcg_rotr_32(high, newlow & 31u);
- return (((uint64_t)newhigh) << 32u) | newlow;
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t pcg_output_xsl_rr_rr_128_128(pcg128_t state)
- {
- uint32_t rot1 = (uint32_t)(state >> 122u);
- uint64_t high = (uint64_t)(state >> 64u);
- uint64_t low = (uint64_t)state;
- uint64_t xored = high ^ low;
- uint64_t newlow = pcg_rotr_64(xored, rot1);
- uint64_t newhigh = pcg_rotr_64(high, newlow & 63u);
- return (((pcg128_t)newhigh) << 64u) | newlow;
- }
-#endif
-
-#define PCG_DEFAULT_MULTIPLIER_8 141U
-#define PCG_DEFAULT_MULTIPLIER_16 12829U
-#define PCG_DEFAULT_MULTIPLIER_32 747796405U
-#define PCG_DEFAULT_MULTIPLIER_64 6364136223846793005ULL
-
-#define PCG_DEFAULT_INCREMENT_8 77U
-#define PCG_DEFAULT_INCREMENT_16 47989U
-#define PCG_DEFAULT_INCREMENT_32 2891336453U
-#define PCG_DEFAULT_INCREMENT_64 1442695040888963407ULL
-
-#if PCG_HAS_128BIT_OPS
-#define PCG_DEFAULT_MULTIPLIER_128 \
-PCG_128BIT_CONSTANT(2549297995355413924ULL,4865540595714422341ULL)
-#define PCG_DEFAULT_INCREMENT_128 \
-PCG_128BIT_CONSTANT(6364136223846793005ULL,1442695040888963407ULL)
-#endif
-
- /*
- * Static initialization constants (if you can't call srandom for some
- * bizarre reason).
- */
-
-#if PCG_HAS_128BIT_OPS
-#define PCG_STATE_ONESEQ_8_INITIALIZER { 0xd7U }
-#define PCG_STATE_ONESEQ_16_INITIALIZER { 0x20dfU }
-#define PCG_STATE_ONESEQ_32_INITIALIZER { 0x46b56677U }
-#define PCG_STATE_ONESEQ_64_INITIALIZER { 0x4d595df4d0f33173ULL }
-#define PCG_STATE_ONESEQ_128_INITIALIZER \
-{ PCG_128BIT_CONSTANT(0xb8dc10e158a92392ULL, 0x98046df007ec0a53ULL) }
-#endif
-
-#if PCG_HAS_128BIT_OPS
-#define PCG_STATE_UNIQUE_8_INITIALIZER PCG_STATE_ONESEQ_8_INITIALIZER
-#define PCG_STATE_UNIQUE_16_INITIALIZER PCG_STATE_ONESEQ_16_INITIALIZER
-#define PCG_STATE_UNIQUE_32_INITIALIZER PCG_STATE_ONESEQ_32_INITIALIZER
-#define PCG_STATE_UNIQUE_64_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER
-#define PCG_STATE_UNIQUE_128_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER
-#endif
-
-#if PCG_HAS_128BIT_OPS
-#define PCG_STATE_MCG_8_INITIALIZER { 0xe5U }
-#define PCG_STATE_MCG_16_INITIALIZER { 0xa5e5U }
-#define PCG_STATE_MCG_32_INITIALIZER { 0xd15ea5e5U }
-#define PCG_STATE_MCG_64_INITIALIZER { 0xcafef00dd15ea5e5ULL }
-#define PCG_STATE_MCG_128_INITIALIZER \
-{ PCG_128BIT_CONSTANT(0x0000000000000000ULL, 0xcafef00dd15ea5e5ULL) }
-#endif
-
-#if PCG_HAS_128BIT_OPS
-#define PCG_STATE_SETSEQ_8_INITIALIZER { 0x9bU, 0xdbU }
-#define PCG_STATE_SETSEQ_16_INITIALIZER { 0xe39bU, 0x5bdbU }
-#define PCG_STATE_SETSEQ_32_INITIALIZER { 0xec02d89bU, 0x94b95bdbU }
-#define PCG_STATE_SETSEQ_64_INITIALIZER \
-{ 0x853c49e6748fea9bULL, 0xda3e39cb94b95bdbULL }
-#define PCG_STATE_SETSEQ_128_INITIALIZER \
-{ PCG_128BIT_CONSTANT(0x979c9a98d8462005ULL, 0x7d3e9cb6cfe0549bULL), \
-PCG_128BIT_CONSTANT(0x0000000000000001ULL, 0xda3e39cb94b95bdbULL) }
-#endif
-
- /* Representations for the oneseq, mcg, and unique variants */
-
- struct pcg_state_8 {
- uint8_t state;
- };
-
- struct pcg_state_16 {
- uint16_t state;
- };
-
- struct pcg_state_32 {
- uint32_t state;
- };
-
- struct pcg_state_64 {
- uint64_t state;
- };
-
-#if PCG_HAS_128BIT_OPS
- struct pcg_state_128 {
- pcg128_t state;
- };
-#endif
-
- /* Representations setseq variants */
-
- struct pcg_state_setseq_8 {
- uint8_t state;
- uint8_t inc;
- };
-
- struct pcg_state_setseq_16 {
- uint16_t state;
- uint16_t inc;
- };
-
- struct pcg_state_setseq_32 {
- uint32_t state;
- uint32_t inc;
- };
-
- struct pcg_state_setseq_64 {
- uint64_t state;
- uint64_t inc;
- };
-
-#if PCG_HAS_128BIT_OPS
- struct pcg_state_setseq_128 {
- pcg128_t state;
- pcg128_t inc;
- };
-#endif
-
- /* Multi-step advance functions (jump-ahead, jump-back) */
-
- extern uint8_t pcg_advance_lcg_8(uint8_t state, uint8_t delta, uint8_t cur_mult,
- uint8_t cur_plus);
- extern uint16_t pcg_advance_lcg_16(uint16_t state, uint16_t delta,
- uint16_t cur_mult, uint16_t cur_plus);
- extern uint32_t pcg_advance_lcg_32(uint32_t state, uint32_t delta,
- uint32_t cur_mult, uint32_t cur_plus);
- extern uint64_t pcg_advance_lcg_64(uint64_t state, uint64_t delta,
- uint64_t cur_mult, uint64_t cur_plus);
-
-#if PCG_HAS_128BIT_OPS
- extern pcg128_t pcg_advance_lcg_128(pcg128_t state, pcg128_t delta,
- pcg128_t cur_mult, pcg128_t cur_plus);
-#endif
-
- /* Functions to advance the underlying LCG, one version for each size and
- * each style. These functions are considered semi-private. There is rarely
- * a good reason to call them directly.
- */
-
- inline void pcg_oneseq_8_step_r(struct pcg_state_8* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8
- + PCG_DEFAULT_INCREMENT_8;
- }
-
- inline void pcg_oneseq_8_advance_r(struct pcg_state_8* rng, uint8_t delta)
- {
- rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8,
- PCG_DEFAULT_INCREMENT_8);
- }
-
- inline void pcg_mcg_8_step_r(struct pcg_state_8* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8;
- }
-
- inline void pcg_mcg_8_advance_r(struct pcg_state_8* rng, uint8_t delta)
- {
- rng->state
- = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8, 0u);
- }
-
- inline void pcg_unique_8_step_r(struct pcg_state_8* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8
- + (uint8_t)(((intptr_t)rng) | 1u);
- }
-
- inline void pcg_unique_8_advance_r(struct pcg_state_8* rng, uint8_t delta)
- {
- rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8,
- (uint8_t)(((intptr_t)rng) | 1u));
- }
-
- inline void pcg_setseq_8_step_r(struct pcg_state_setseq_8* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8 + rng->inc;
- }
-
- inline void pcg_setseq_8_advance_r(struct pcg_state_setseq_8* rng,
- uint8_t delta)
- {
- rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8,
- rng->inc);
- }
-
- inline void pcg_oneseq_16_step_r(struct pcg_state_16* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16
- + PCG_DEFAULT_INCREMENT_16;
- }
-
- inline void pcg_oneseq_16_advance_r(struct pcg_state_16* rng, uint16_t delta)
- {
- rng->state = pcg_advance_lcg_16(
- rng->state, delta, PCG_DEFAULT_MULTIPLIER_16, PCG_DEFAULT_INCREMENT_16);
- }
-
- inline void pcg_mcg_16_step_r(struct pcg_state_16* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16;
- }
-
- inline void pcg_mcg_16_advance_r(struct pcg_state_16* rng, uint16_t delta)
- {
- rng->state
- = pcg_advance_lcg_16(rng->state, delta, PCG_DEFAULT_MULTIPLIER_16, 0u);
- }
-
- inline void pcg_unique_16_step_r(struct pcg_state_16* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16
- + (uint16_t)(((intptr_t)rng) | 1u);
- }
-
- inline void pcg_unique_16_advance_r(struct pcg_state_16* rng, uint16_t delta)
- {
- rng->state
- = pcg_advance_lcg_16(rng->state, delta, PCG_DEFAULT_MULTIPLIER_16,
- (uint16_t)(((intptr_t)rng) | 1u));
- }
-
- inline void pcg_setseq_16_step_r(struct pcg_state_setseq_16* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16 + rng->inc;
- }
-
- inline void pcg_setseq_16_advance_r(struct pcg_state_setseq_16* rng,
- uint16_t delta)
- {
- rng->state = pcg_advance_lcg_16(rng->state, delta,
- PCG_DEFAULT_MULTIPLIER_16, rng->inc);
- }
-
- inline void pcg_oneseq_32_step_r(struct pcg_state_32* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32
- + PCG_DEFAULT_INCREMENT_32;
- }
-
- inline void pcg_oneseq_32_advance_r(struct pcg_state_32* rng, uint32_t delta)
- {
- rng->state = pcg_advance_lcg_32(
- rng->state, delta, PCG_DEFAULT_MULTIPLIER_32, PCG_DEFAULT_INCREMENT_32);
- }
-
- inline void pcg_mcg_32_step_r(struct pcg_state_32* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32;
- }
-
- inline void pcg_mcg_32_advance_r(struct pcg_state_32* rng, uint32_t delta)
- {
- rng->state
- = pcg_advance_lcg_32(rng->state, delta, PCG_DEFAULT_MULTIPLIER_32, 0u);
- }
-
- inline void pcg_unique_32_step_r(struct pcg_state_32* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32
- + (uint32_t)(((intptr_t)rng) | 1u);
- }
-
- inline void pcg_unique_32_advance_r(struct pcg_state_32* rng, uint32_t delta)
- {
- rng->state
- = pcg_advance_lcg_32(rng->state, delta, PCG_DEFAULT_MULTIPLIER_32,
- (uint32_t)(((intptr_t)rng) | 1u));
- }
-
- inline void pcg_setseq_32_step_r(struct pcg_state_setseq_32* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32 + rng->inc;
- }
-
- inline void pcg_setseq_32_advance_r(struct pcg_state_setseq_32* rng,
- uint32_t delta)
- {
- rng->state = pcg_advance_lcg_32(rng->state, delta,
- PCG_DEFAULT_MULTIPLIER_32, rng->inc);
- }
-
- inline void pcg_oneseq_64_step_r(struct pcg_state_64* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64
- + PCG_DEFAULT_INCREMENT_64;
- }
-
- inline void pcg_oneseq_64_advance_r(struct pcg_state_64* rng, uint64_t delta)
- {
- rng->state = pcg_advance_lcg_64(
- rng->state, delta, PCG_DEFAULT_MULTIPLIER_64, PCG_DEFAULT_INCREMENT_64);
- }
-
- inline void pcg_mcg_64_step_r(struct pcg_state_64* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64;
- }
-
- inline void pcg_mcg_64_advance_r(struct pcg_state_64* rng, uint64_t delta)
- {
- rng->state
- = pcg_advance_lcg_64(rng->state, delta, PCG_DEFAULT_MULTIPLIER_64, 0u);
- }
-
- inline void pcg_unique_64_step_r(struct pcg_state_64* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64
- + (uint64_t)(((intptr_t)rng) | 1u);
- }
-
- inline void pcg_unique_64_advance_r(struct pcg_state_64* rng, uint64_t delta)
- {
- rng->state
- = pcg_advance_lcg_64(rng->state, delta, PCG_DEFAULT_MULTIPLIER_64,
- (uint64_t)(((intptr_t)rng) | 1u));
- }
-
- inline void pcg_setseq_64_step_r(struct pcg_state_setseq_64* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64 + rng->inc;
- }
-
- inline void pcg_setseq_64_advance_r(struct pcg_state_setseq_64* rng,
- uint64_t delta)
- {
- rng->state = pcg_advance_lcg_64(rng->state, delta,
- PCG_DEFAULT_MULTIPLIER_64, rng->inc);
- }
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_oneseq_128_step_r(struct pcg_state_128* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128
- + PCG_DEFAULT_INCREMENT_128;
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_oneseq_128_advance_r(struct pcg_state_128* rng, pcg128_t delta)
- {
- rng->state
- = pcg_advance_lcg_128(rng->state, delta, PCG_DEFAULT_MULTIPLIER_128,
- PCG_DEFAULT_INCREMENT_128);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_mcg_128_step_r(struct pcg_state_128* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128;
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_mcg_128_advance_r(struct pcg_state_128* rng, pcg128_t delta)
- {
- rng->state = pcg_advance_lcg_128(rng->state, delta,
- PCG_DEFAULT_MULTIPLIER_128, 0u);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_unique_128_step_r(struct pcg_state_128* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128
- + (pcg128_t)(((intptr_t)rng) | 1u);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_unique_128_advance_r(struct pcg_state_128* rng, pcg128_t delta)
- {
- rng->state
- = pcg_advance_lcg_128(rng->state, delta, PCG_DEFAULT_MULTIPLIER_128,
- (pcg128_t)(((intptr_t)rng) | 1u));
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_setseq_128_step_r(struct pcg_state_setseq_128* rng)
- {
- rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128 + rng->inc;
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_setseq_128_advance_r(struct pcg_state_setseq_128* rng,
- pcg128_t delta)
- {
- rng->state = pcg_advance_lcg_128(rng->state, delta,
- PCG_DEFAULT_MULTIPLIER_128, rng->inc);
- }
-#endif
-
- /* Functions to seed the RNG state, one version for each size and each
- * style. Unlike the step functions, regular users can and should call
- * these functions.
- */
-
- inline void pcg_oneseq_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate)
- {
- rng->state = 0U;
- pcg_oneseq_8_step_r(rng);
- rng->state += initstate;
- pcg_oneseq_8_step_r(rng);
- }
-
- inline void pcg_mcg_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate)
- {
- rng->state = initstate | 1u;
- }
-
- inline void pcg_unique_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate)
- {
- rng->state = 0U;
- pcg_unique_8_step_r(rng);
- rng->state += initstate;
- pcg_unique_8_step_r(rng);
- }
-
- inline void pcg_setseq_8_srandom_r(struct pcg_state_setseq_8* rng,
- uint8_t initstate, uint8_t initseq)
- {
- rng->state = 0U;
- rng->inc = (initseq << 1u) | 1u;
- pcg_setseq_8_step_r(rng);
- rng->state += initstate;
- pcg_setseq_8_step_r(rng);
- }
-
- inline void pcg_oneseq_16_srandom_r(struct pcg_state_16* rng,
- uint16_t initstate)
- {
- rng->state = 0U;
- pcg_oneseq_16_step_r(rng);
- rng->state += initstate;
- pcg_oneseq_16_step_r(rng);
- }
-
- inline void pcg_mcg_16_srandom_r(struct pcg_state_16* rng, uint16_t initstate)
- {
- rng->state = initstate | 1u;
- }
-
- inline void pcg_unique_16_srandom_r(struct pcg_state_16* rng,
- uint16_t initstate)
- {
- rng->state = 0U;
- pcg_unique_16_step_r(rng);
- rng->state += initstate;
- pcg_unique_16_step_r(rng);
- }
-
- inline void pcg_setseq_16_srandom_r(struct pcg_state_setseq_16* rng,
- uint16_t initstate, uint16_t initseq)
- {
- rng->state = 0U;
- rng->inc = (initseq << 1u) | 1u;
- pcg_setseq_16_step_r(rng);
- rng->state += initstate;
- pcg_setseq_16_step_r(rng);
- }
-
- inline void pcg_oneseq_32_srandom_r(struct pcg_state_32* rng,
- uint32_t initstate)
- {
- rng->state = 0U;
- pcg_oneseq_32_step_r(rng);
- rng->state += initstate;
- pcg_oneseq_32_step_r(rng);
- }
-
- inline void pcg_mcg_32_srandom_r(struct pcg_state_32* rng, uint32_t initstate)
- {
- rng->state = initstate | 1u;
- }
-
- inline void pcg_unique_32_srandom_r(struct pcg_state_32* rng,
- uint32_t initstate)
- {
- rng->state = 0U;
- pcg_unique_32_step_r(rng);
- rng->state += initstate;
- pcg_unique_32_step_r(rng);
- }
-
- inline void pcg_setseq_32_srandom_r(struct pcg_state_setseq_32* rng,
- uint32_t initstate, uint32_t initseq)
- {
- rng->state = 0U;
- rng->inc = (initseq << 1u) | 1u;
- pcg_setseq_32_step_r(rng);
- rng->state += initstate;
- pcg_setseq_32_step_r(rng);
- }
-
- inline void pcg_oneseq_64_srandom_r(struct pcg_state_64* rng,
- uint64_t initstate)
- {
- rng->state = 0U;
- pcg_oneseq_64_step_r(rng);
- rng->state += initstate;
- pcg_oneseq_64_step_r(rng);
- }
-
- inline void pcg_mcg_64_srandom_r(struct pcg_state_64* rng, uint64_t initstate)
- {
- rng->state = initstate | 1u;
- }
-
- inline void pcg_unique_64_srandom_r(struct pcg_state_64* rng,
- uint64_t initstate)
- {
- rng->state = 0U;
- pcg_unique_64_step_r(rng);
- rng->state += initstate;
- pcg_unique_64_step_r(rng);
- }
-
- inline void pcg_setseq_64_srandom_r(struct pcg_state_setseq_64* rng,
- uint64_t initstate, uint64_t initseq)
- {
- rng->state = 0U;
- rng->inc = (initseq << 1u) | 1u;
- pcg_setseq_64_step_r(rng);
- rng->state += initstate;
- pcg_setseq_64_step_r(rng);
- }
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_oneseq_128_srandom_r(struct pcg_state_128* rng,
- pcg128_t initstate)
- {
- rng->state = 0U;
- pcg_oneseq_128_step_r(rng);
- rng->state += initstate;
- pcg_oneseq_128_step_r(rng);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_mcg_128_srandom_r(struct pcg_state_128* rng, pcg128_t initstate)
- {
- rng->state = initstate | 1u;
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_unique_128_srandom_r(struct pcg_state_128* rng,
- pcg128_t initstate)
- {
- rng->state = 0U;
- pcg_unique_128_step_r(rng);
- rng->state += initstate;
- pcg_unique_128_step_r(rng);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline void pcg_setseq_128_srandom_r(struct pcg_state_setseq_128* rng,
- pcg128_t initstate, pcg128_t initseq)
- {
- rng->state = 0U;
- rng->inc = (initseq << 1u) | 1u;
- pcg_setseq_128_step_r(rng);
- rng->state += initstate;
- pcg_setseq_128_step_r(rng);
- }
-#endif
-
- /* Now, finally we create each of the individual generators. We provide
- * a random_r function that provides a random number of the appropriate
- * type (using the full range of the type) and a boundedrand_r version
- * that provides
- *
- * Implementation notes for boundedrand_r:
- *
- * To avoid bias, we need to make the range of the RNG a multiple of
- * bound, which we do by dropping output less than a threshold.
- * Let's consider a 32-bit case... A naive scheme to calculate the
- * threshold would be to do
- *
- * uint32_t threshold = 0x100000000ull % bound;
- *
- * but 64-bit div/mod is slower than 32-bit div/mod (especially on
- * 32-bit platforms). In essence, we do
- *
- * uint32_t threshold = (0x100000000ull-bound) % bound;
- *
- * because this version will calculate the same modulus, but the LHS
- * value is less than 2^32.
- *
- * (Note that using modulo is only wise for good RNGs, poorer RNGs
- * such as raw LCGs do better using a technique based on division.)
- * Empricical tests show that division is preferable to modulus for
- * reducting the range of an RNG. It's faster, and sometimes it can
- * even be statistically prefereable.
- */
-
- /* Generation functions for XSH RS */
-
- inline uint8_t pcg_oneseq_16_xsh_rs_8_random_r(struct pcg_state_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_oneseq_16_step_r(rng);
- return pcg_output_xsh_rs_16_8(oldstate);
- }
-
- inline uint8_t pcg_oneseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_oneseq_16_xsh_rs_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t pcg_oneseq_32_xsh_rs_16_random_r(struct pcg_state_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_oneseq_32_step_r(rng);
- return pcg_output_xsh_rs_32_16(oldstate);
- }
-
- inline uint16_t pcg_oneseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_oneseq_32_xsh_rs_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t pcg_oneseq_64_xsh_rs_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_oneseq_64_step_r(rng);
- return pcg_output_xsh_rs_64_32(oldstate);
- }
-
- inline uint32_t pcg_oneseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_oneseq_64_xsh_rs_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_oneseq_128_xsh_rs_64_random_r(struct pcg_state_128* rng)
- {
- pcg_oneseq_128_step_r(rng);
- return pcg_output_xsh_rs_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_oneseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_oneseq_128_xsh_rs_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint8_t pcg_unique_16_xsh_rs_8_random_r(struct pcg_state_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_unique_16_step_r(rng);
- return pcg_output_xsh_rs_16_8(oldstate);
- }
-
- inline uint8_t pcg_unique_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_unique_16_xsh_rs_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t pcg_unique_32_xsh_rs_16_random_r(struct pcg_state_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_unique_32_step_r(rng);
- return pcg_output_xsh_rs_32_16(oldstate);
- }
-
- inline uint16_t pcg_unique_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_unique_32_xsh_rs_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t pcg_unique_64_xsh_rs_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_unique_64_step_r(rng);
- return pcg_output_xsh_rs_64_32(oldstate);
- }
-
- inline uint32_t pcg_unique_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_unique_64_xsh_rs_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_unique_128_xsh_rs_64_random_r(struct pcg_state_128* rng)
- {
- pcg_unique_128_step_r(rng);
- return pcg_output_xsh_rs_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_unique_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_unique_128_xsh_rs_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint8_t pcg_setseq_16_xsh_rs_8_random_r(struct pcg_state_setseq_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_setseq_16_step_r(rng);
- return pcg_output_xsh_rs_16_8(oldstate);
- }
-
- inline uint8_t
- pcg_setseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_setseq_16* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_setseq_16_xsh_rs_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t
- pcg_setseq_32_xsh_rs_16_random_r(struct pcg_state_setseq_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_setseq_32_step_r(rng);
- return pcg_output_xsh_rs_32_16(oldstate);
- }
-
- inline uint16_t
- pcg_setseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_setseq_32* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_setseq_32_xsh_rs_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t
- pcg_setseq_64_xsh_rs_32_random_r(struct pcg_state_setseq_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_setseq_64_step_r(rng);
- return pcg_output_xsh_rs_64_32(oldstate);
- }
-
- inline uint32_t
- pcg_setseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_setseq_64_xsh_rs_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_setseq_128_xsh_rs_64_random_r(struct pcg_state_setseq_128* rng)
- {
- pcg_setseq_128_step_r(rng);
- return pcg_output_xsh_rs_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_setseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_setseq_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_setseq_128_xsh_rs_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint8_t pcg_mcg_16_xsh_rs_8_random_r(struct pcg_state_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_mcg_16_step_r(rng);
- return pcg_output_xsh_rs_16_8(oldstate);
- }
-
- inline uint8_t pcg_mcg_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_mcg_16_xsh_rs_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t pcg_mcg_32_xsh_rs_16_random_r(struct pcg_state_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_mcg_32_step_r(rng);
- return pcg_output_xsh_rs_32_16(oldstate);
- }
-
- inline uint16_t pcg_mcg_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_mcg_32_xsh_rs_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t pcg_mcg_64_xsh_rs_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_mcg_64_step_r(rng);
- return pcg_output_xsh_rs_64_32(oldstate);
- }
-
- inline uint32_t pcg_mcg_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_mcg_64_xsh_rs_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_mcg_128_xsh_rs_64_random_r(struct pcg_state_128* rng)
- {
- pcg_mcg_128_step_r(rng);
- return pcg_output_xsh_rs_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_mcg_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_mcg_128_xsh_rs_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- /* Generation functions for XSH RR */
-
- inline uint8_t pcg_oneseq_16_xsh_rr_8_random_r(struct pcg_state_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_oneseq_16_step_r(rng);
- return pcg_output_xsh_rr_16_8(oldstate);
- }
-
- inline uint8_t pcg_oneseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_oneseq_16_xsh_rr_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t pcg_oneseq_32_xsh_rr_16_random_r(struct pcg_state_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_oneseq_32_step_r(rng);
- return pcg_output_xsh_rr_32_16(oldstate);
- }
-
- inline uint16_t pcg_oneseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_oneseq_32_xsh_rr_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t pcg_oneseq_64_xsh_rr_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_oneseq_64_step_r(rng);
- return pcg_output_xsh_rr_64_32(oldstate);
- }
-
- inline uint32_t pcg_oneseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_oneseq_64_xsh_rr_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_oneseq_128_xsh_rr_64_random_r(struct pcg_state_128* rng)
- {
- pcg_oneseq_128_step_r(rng);
- return pcg_output_xsh_rr_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_oneseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_oneseq_128_xsh_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint8_t pcg_unique_16_xsh_rr_8_random_r(struct pcg_state_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_unique_16_step_r(rng);
- return pcg_output_xsh_rr_16_8(oldstate);
- }
-
- inline uint8_t pcg_unique_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_unique_16_xsh_rr_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t pcg_unique_32_xsh_rr_16_random_r(struct pcg_state_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_unique_32_step_r(rng);
- return pcg_output_xsh_rr_32_16(oldstate);
- }
-
- inline uint16_t pcg_unique_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_unique_32_xsh_rr_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t pcg_unique_64_xsh_rr_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_unique_64_step_r(rng);
- return pcg_output_xsh_rr_64_32(oldstate);
- }
-
- inline uint32_t pcg_unique_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_unique_64_xsh_rr_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_unique_128_xsh_rr_64_random_r(struct pcg_state_128* rng)
- {
- pcg_unique_128_step_r(rng);
- return pcg_output_xsh_rr_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_unique_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_unique_128_xsh_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint8_t pcg_setseq_16_xsh_rr_8_random_r(struct pcg_state_setseq_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_setseq_16_step_r(rng);
- return pcg_output_xsh_rr_16_8(oldstate);
- }
-
- inline uint8_t
- pcg_setseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_setseq_16* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_setseq_16_xsh_rr_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t
- pcg_setseq_32_xsh_rr_16_random_r(struct pcg_state_setseq_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_setseq_32_step_r(rng);
- return pcg_output_xsh_rr_32_16(oldstate);
- }
-
- inline uint16_t
- pcg_setseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_setseq_32* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_setseq_32_xsh_rr_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t
- pcg_setseq_64_xsh_rr_32_random_r(struct pcg_state_setseq_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_setseq_64_step_r(rng);
- return pcg_output_xsh_rr_64_32(oldstate);
- }
-
- inline uint32_t
- pcg_setseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_setseq_64_xsh_rr_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_setseq_128_xsh_rr_64_random_r(struct pcg_state_setseq_128* rng)
- {
- pcg_setseq_128_step_r(rng);
- return pcg_output_xsh_rr_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_setseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_setseq_128_xsh_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint8_t pcg_mcg_16_xsh_rr_8_random_r(struct pcg_state_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_mcg_16_step_r(rng);
- return pcg_output_xsh_rr_16_8(oldstate);
- }
-
- inline uint8_t pcg_mcg_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_mcg_16_xsh_rr_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t pcg_mcg_32_xsh_rr_16_random_r(struct pcg_state_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_mcg_32_step_r(rng);
- return pcg_output_xsh_rr_32_16(oldstate);
- }
-
- inline uint16_t pcg_mcg_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_mcg_32_xsh_rr_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t pcg_mcg_64_xsh_rr_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_mcg_64_step_r(rng);
- return pcg_output_xsh_rr_64_32(oldstate);
- }
-
- inline uint32_t pcg_mcg_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_mcg_64_xsh_rr_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_mcg_128_xsh_rr_64_random_r(struct pcg_state_128* rng)
- {
- pcg_mcg_128_step_r(rng);
- return pcg_output_xsh_rr_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_mcg_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_mcg_128_xsh_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- /* Generation functions for RXS M XS (no MCG versions because they
- * don't make sense when you want to use the entire state)
- */
-
- inline uint8_t pcg_oneseq_8_rxs_m_xs_8_random_r(struct pcg_state_8* rng)
- {
- uint8_t oldstate = rng->state;
- pcg_oneseq_8_step_r(rng);
- return pcg_output_rxs_m_xs_8_8(oldstate);
- }
-
- inline uint8_t pcg_oneseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_8* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_oneseq_8_rxs_m_xs_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t pcg_oneseq_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_oneseq_16_step_r(rng);
- return pcg_output_rxs_m_xs_16_16(oldstate);
- }
-
- inline uint16_t
- pcg_oneseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_oneseq_16_rxs_m_xs_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t pcg_oneseq_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_oneseq_32_step_r(rng);
- return pcg_output_rxs_m_xs_32_32(oldstate);
- }
-
- inline uint32_t
- pcg_oneseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_oneseq_32_rxs_m_xs_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint64_t pcg_oneseq_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_oneseq_64_step_r(rng);
- return pcg_output_rxs_m_xs_64_64(oldstate);
- }
-
- inline uint64_t
- pcg_oneseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_oneseq_64_rxs_m_xs_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t pcg_oneseq_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng)
- {
- pcg_oneseq_128_step_r(rng);
- return pcg_output_rxs_m_xs_128_128(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t
- pcg_oneseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng,
- pcg128_t bound)
- {
- pcg128_t threshold = -bound % bound;
- for (;;) {
- pcg128_t r = pcg_oneseq_128_rxs_m_xs_128_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint16_t pcg_unique_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_unique_16_step_r(rng);
- return pcg_output_rxs_m_xs_16_16(oldstate);
- }
-
- inline uint16_t
- pcg_unique_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_unique_16_rxs_m_xs_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t pcg_unique_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_unique_32_step_r(rng);
- return pcg_output_rxs_m_xs_32_32(oldstate);
- }
-
- inline uint32_t
- pcg_unique_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_unique_32_rxs_m_xs_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint64_t pcg_unique_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_unique_64_step_r(rng);
- return pcg_output_rxs_m_xs_64_64(oldstate);
- }
-
- inline uint64_t
- pcg_unique_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_unique_64_rxs_m_xs_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t pcg_unique_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng)
- {
- pcg_unique_128_step_r(rng);
- return pcg_output_rxs_m_xs_128_128(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t
- pcg_unique_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng,
- pcg128_t bound)
- {
- pcg128_t threshold = -bound % bound;
- for (;;) {
- pcg128_t r = pcg_unique_128_rxs_m_xs_128_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint8_t pcg_setseq_8_rxs_m_xs_8_random_r(struct pcg_state_setseq_8* rng)
- {
- uint8_t oldstate = rng->state;
- pcg_setseq_8_step_r(rng);
- return pcg_output_rxs_m_xs_8_8(oldstate);
- }
-
- inline uint8_t
- pcg_setseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_setseq_8* rng,
- uint8_t bound)
- {
- uint8_t threshold = ((uint8_t)(-bound)) % bound;
- for (;;) {
- uint8_t r = pcg_setseq_8_rxs_m_xs_8_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint16_t
- pcg_setseq_16_rxs_m_xs_16_random_r(struct pcg_state_setseq_16* rng)
- {
- uint16_t oldstate = rng->state;
- pcg_setseq_16_step_r(rng);
- return pcg_output_rxs_m_xs_16_16(oldstate);
- }
-
- inline uint16_t
- pcg_setseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_setseq_16* rng,
- uint16_t bound)
- {
- uint16_t threshold = ((uint16_t)(-bound)) % bound;
- for (;;) {
- uint16_t r = pcg_setseq_16_rxs_m_xs_16_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint32_t
- pcg_setseq_32_rxs_m_xs_32_random_r(struct pcg_state_setseq_32* rng)
- {
- uint32_t oldstate = rng->state;
- pcg_setseq_32_step_r(rng);
- return pcg_output_rxs_m_xs_32_32(oldstate);
- }
-
- inline uint32_t
- pcg_setseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_setseq_32* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_setseq_32_rxs_m_xs_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
- inline uint64_t
- pcg_setseq_64_rxs_m_xs_64_random_r(struct pcg_state_setseq_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_setseq_64_step_r(rng);
- return pcg_output_rxs_m_xs_64_64(oldstate);
- }
-
- inline uint64_t
- pcg_setseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_setseq_64_rxs_m_xs_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t
- pcg_setseq_128_rxs_m_xs_128_random_r(struct pcg_state_setseq_128* rng)
- {
- pcg_setseq_128_step_r(rng);
- return pcg_output_rxs_m_xs_128_128(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t
- pcg_setseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_setseq_128* rng,
- pcg128_t bound)
- {
- pcg128_t threshold = -bound % bound;
- for (;;) {
- pcg128_t r = pcg_setseq_128_rxs_m_xs_128_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- /* Generation functions for XSL RR (only defined for "large" types) */
-
- inline uint32_t pcg_oneseq_64_xsl_rr_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_oneseq_64_step_r(rng);
- return pcg_output_xsl_rr_64_32(oldstate);
- }
-
- inline uint32_t pcg_oneseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_oneseq_64_xsl_rr_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_oneseq_128_xsl_rr_64_random_r(struct pcg_state_128* rng)
- {
- pcg_oneseq_128_step_r(rng);
- return pcg_output_xsl_rr_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_oneseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_oneseq_128_xsl_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint32_t pcg_unique_64_xsl_rr_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_unique_64_step_r(rng);
- return pcg_output_xsl_rr_64_32(oldstate);
- }
-
- inline uint32_t pcg_unique_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_unique_64_xsl_rr_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_unique_128_xsl_rr_64_random_r(struct pcg_state_128* rng)
- {
- pcg_unique_128_step_r(rng);
- return pcg_output_xsl_rr_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_unique_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_unique_128_xsl_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint32_t
- pcg_setseq_64_xsl_rr_32_random_r(struct pcg_state_setseq_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_setseq_64_step_r(rng);
- return pcg_output_xsl_rr_64_32(oldstate);
- }
-
- inline uint32_t
- pcg_setseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_setseq_64_xsl_rr_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_setseq_128_xsl_rr_64_random_r(struct pcg_state_setseq_128* rng)
- {
- pcg_setseq_128_step_r(rng);
- return pcg_output_xsl_rr_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t
- pcg_setseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_setseq_128_xsl_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint32_t pcg_mcg_64_xsl_rr_32_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_mcg_64_step_r(rng);
- return pcg_output_xsl_rr_64_32(oldstate);
- }
-
- inline uint32_t pcg_mcg_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng,
- uint32_t bound)
- {
- uint32_t threshold = -bound % bound;
- for (;;) {
- uint32_t r = pcg_mcg_64_xsl_rr_32_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_mcg_128_xsl_rr_64_random_r(struct pcg_state_128* rng)
- {
- pcg_mcg_128_step_r(rng);
- return pcg_output_xsl_rr_128_64(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline uint64_t pcg_mcg_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_mcg_128_xsl_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- /* Generation functions for XSL RR RR (only defined for "large" types) */
-
- inline uint64_t pcg_oneseq_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_oneseq_64_step_r(rng);
- return pcg_output_xsl_rr_rr_64_64(oldstate);
- }
-
- inline uint64_t
- pcg_oneseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_oneseq_64_xsl_rr_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t pcg_oneseq_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng)
- {
- pcg_oneseq_128_step_r(rng);
- return pcg_output_xsl_rr_rr_128_128(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t
- pcg_oneseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng,
- pcg128_t bound)
- {
- pcg128_t threshold = -bound % bound;
- for (;;) {
- pcg128_t r = pcg_oneseq_128_xsl_rr_rr_128_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint64_t pcg_unique_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_unique_64_step_r(rng);
- return pcg_output_xsl_rr_rr_64_64(oldstate);
- }
-
- inline uint64_t
- pcg_unique_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_unique_64_xsl_rr_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t pcg_unique_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng)
- {
- pcg_unique_128_step_r(rng);
- return pcg_output_xsl_rr_rr_128_128(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t
- pcg_unique_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng,
- pcg128_t bound)
- {
- pcg128_t threshold = -bound % bound;
- for (;;) {
- pcg128_t r = pcg_unique_128_xsl_rr_rr_128_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- inline uint64_t
- pcg_setseq_64_xsl_rr_rr_64_random_r(struct pcg_state_setseq_64* rng)
- {
- uint64_t oldstate = rng->state;
- pcg_setseq_64_step_r(rng);
- return pcg_output_xsl_rr_rr_64_64(oldstate);
- }
-
- inline uint64_t
- pcg_setseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_setseq_64* rng,
- uint64_t bound)
- {
- uint64_t threshold = -bound % bound;
- for (;;) {
- uint64_t r = pcg_setseq_64_xsl_rr_rr_64_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t
- pcg_setseq_128_xsl_rr_rr_128_random_r(struct pcg_state_setseq_128* rng)
- {
- pcg_setseq_128_step_r(rng);
- return pcg_output_xsl_rr_rr_128_128(rng->state);
- }
-#endif
-
-#if PCG_HAS_128BIT_OPS
- inline pcg128_t
- pcg_setseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_setseq_128* rng,
- pcg128_t bound)
- {
- pcg128_t threshold = -bound % bound;
- for (;;) {
- pcg128_t r = pcg_setseq_128_xsl_rr_rr_128_random_r(rng);
- if (r >= threshold)
- return r % bound;
- }
- }
-#endif
-
- //// Typedefs
- typedef struct pcg_state_setseq_64 pcg32_random_t;
- typedef struct pcg_state_64 pcg32s_random_t;
- typedef struct pcg_state_64 pcg32u_random_t;
- typedef struct pcg_state_64 pcg32f_random_t;
- //// random_r
-#define pcg32_random_r pcg_setseq_64_xsh_rr_32_random_r
-#define pcg32s_random_r pcg_oneseq_64_xsh_rr_32_random_r
-#define pcg32u_random_r pcg_unique_64_xsh_rr_32_random_r
-#define pcg32f_random_r pcg_mcg_64_xsh_rs_32_random_r
- //// boundedrand_r
-#define pcg32_boundedrand_r pcg_setseq_64_xsh_rr_32_boundedrand_r
-#define pcg32s_boundedrand_r pcg_oneseq_64_xsh_rr_32_boundedrand_r
-#define pcg32u_boundedrand_r pcg_unique_64_xsh_rr_32_boundedrand_r
-#define pcg32f_boundedrand_r pcg_mcg_64_xsh_rs_32_boundedrand_r
- //// srandom_r
-#define pcg32_srandom_r pcg_setseq_64_srandom_r
-#define pcg32s_srandom_r pcg_oneseq_64_srandom_r
-#define pcg32u_srandom_r pcg_unique_64_srandom_r
-#define pcg32f_srandom_r pcg_mcg_64_srandom_r
- //// advance_r
-#define pcg32_advance_r pcg_setseq_64_advance_r
-#define pcg32s_advance_r pcg_oneseq_64_advance_r
-#define pcg32u_advance_r pcg_unique_64_advance_r
-#define pcg32f_advance_r pcg_mcg_64_advance_r
-
-#if PCG_HAS_128BIT_OPS
- //// Typedefs
- typedef struct pcg_state_setseq_128 pcg64_random_t;
- typedef struct pcg_state_128 pcg64s_random_t;
- typedef struct pcg_state_128 pcg64u_random_t;
- typedef struct pcg_state_128 pcg64f_random_t;
- //// random_r
-#define pcg64_random_r pcg_setseq_128_xsl_rr_64_random_r
-#define pcg64s_random_r pcg_oneseq_128_xsl_rr_64_random_r
-#define pcg64u_random_r pcg_unique_128_xsl_rr_64_random_r
-#define pcg64f_random_r pcg_mcg_128_xsl_rr_64_random_r
- //// boundedrand_r
-#define pcg64_boundedrand_r pcg_setseq_128_xsl_rr_64_boundedrand_r
-#define pcg64s_boundedrand_r pcg_oneseq_128_xsl_rr_64_boundedrand_r
-#define pcg64u_boundedrand_r pcg_unique_128_xsl_rr_64_boundedrand_r
-#define pcg64f_boundedrand_r pcg_mcg_128_xsl_rr_64_boundedrand_r
- //// srandom_r
-#define pcg64_srandom_r pcg_setseq_128_srandom_r
-#define pcg64s_srandom_r pcg_oneseq_128_srandom_r
-#define pcg64u_srandom_r pcg_unique_128_srandom_r
-#define pcg64f_srandom_r pcg_mcg_128_srandom_r
- //// advance_r
-#define pcg64_advance_r pcg_setseq_128_advance_r
-#define pcg64s_advance_r pcg_oneseq_128_advance_r
-#define pcg64u_advance_r pcg_unique_128_advance_r
-#define pcg64f_advance_r pcg_mcg_128_advance_r
-#endif
-
- //// Typedefs
- typedef struct pcg_state_8 pcg8si_random_t;
- typedef struct pcg_state_16 pcg16si_random_t;
- typedef struct pcg_state_32 pcg32si_random_t;
- typedef struct pcg_state_64 pcg64si_random_t;
- //// random_r
-#define pcg8si_random_r pcg_oneseq_8_rxs_m_xs_8_random_r
-#define pcg16si_random_r pcg_oneseq_16_rxs_m_xs_16_random_r
-#define pcg32si_random_r pcg_oneseq_32_rxs_m_xs_32_random_r
-#define pcg64si_random_r pcg_oneseq_64_rxs_m_xs_64_random_r
- //// boundedrand_r
-#define pcg8si_boundedrand_r pcg_oneseq_8_rxs_m_xs_8_boundedrand_r
-#define pcg16si_boundedrand_r pcg_oneseq_16_rxs_m_xs_16_boundedrand_r
-#define pcg32si_boundedrand_r pcg_oneseq_32_rxs_m_xs_32_boundedrand_r
-#define pcg64si_boundedrand_r pcg_oneseq_64_rxs_m_xs_64_boundedrand_r
- //// srandom_r
-#define pcg8si_srandom_r pcg_oneseq_8_srandom_r
-#define pcg16si_srandom_r pcg_oneseq_16_srandom_r
-#define pcg32si_srandom_r pcg_oneseq_32_srandom_r
-#define pcg64si_srandom_r pcg_oneseq_64_srandom_r
- //// advance_r
-#define pcg8si_advance_r pcg_oneseq_8_advance_r
-#define pcg16si_advance_r pcg_oneseq_16_advance_r
-#define pcg32si_advance_r pcg_oneseq_32_advance_r
-#define pcg64si_advance_r pcg_oneseq_64_advance_r
-
-#if PCG_HAS_128BIT_OPS
- typedef struct pcg_state_128 pcg128si_random_t;
-#define pcg128si_random_r pcg_oneseq_128_rxs_m_xs_128_random_r
-#define pcg128si_boundedrand_r pcg_oneseq_128_rxs_m_xs_128_boundedrand_r
-#define pcg128si_srandom_r pcg_oneseq_128_srandom_r
-#define pcg128si_advance_r pcg_oneseq_128_advance_r
-#endif
-
- //// Typedefs
- typedef struct pcg_state_setseq_8 pcg8i_random_t;
- typedef struct pcg_state_setseq_16 pcg16i_random_t;
- typedef struct pcg_state_setseq_32 pcg32i_random_t;
- typedef struct pcg_state_setseq_64 pcg64i_random_t;
- //// random_r
-#define pcg8i_random_r pcg_setseq_8_rxs_m_xs_8_random_r
-#define pcg16i_random_r pcg_setseq_16_rxs_m_xs_16_random_r
-#define pcg32i_random_r pcg_setseq_32_rxs_m_xs_32_random_r
-#define pcg64i_random_r pcg_setseq_64_rxs_m_xs_64_random_r
- //// boundedrand_r
-#define pcg8i_boundedrand_r pcg_setseq_8_rxs_m_xs_8_boundedrand_r
-#define pcg16i_boundedrand_r pcg_setseq_16_rxs_m_xs_16_boundedrand_r
-#define pcg32i_boundedrand_r pcg_setseq_32_rxs_m_xs_32_boundedrand_r
-#define pcg64i_boundedrand_r pcg_setseq_64_rxs_m_xs_64_boundedrand_r
- //// srandom_r
-#define pcg8i_srandom_r pcg_setseq_8_srandom_r
-#define pcg16i_srandom_r pcg_setseq_16_srandom_r
-#define pcg32i_srandom_r pcg_setseq_32_srandom_r
-#define pcg64i_srandom_r pcg_setseq_64_srandom_r
- //// advance_r
-#define pcg8i_advance_r pcg_setseq_8_advance_r
-#define pcg16i_advance_r pcg_setseq_16_advance_r
-#define pcg32i_advance_r pcg_setseq_32_advance_r
-#define pcg64i_advance_r pcg_setseq_64_advance_r
-
-#if PCG_HAS_128BIT_OPS
- typedef struct pcg_state_setseq_128 pcg128i_random_t;
-#define pcg128i_random_r pcg_setseq_128_rxs_m_xs_128_random_r
-#define pcg128i_boundedrand_r pcg_setseq_128_rxs_m_xs_128_boundedrand_r
-#define pcg128i_srandom_r pcg_setseq_128_srandom_r
-#define pcg128i_advance_r pcg_setseq_128_advance_r
-#endif
-
- extern uint32_t pcg32_random();
- extern uint32_t pcg32_boundedrand(uint32_t bound);
- extern void pcg32_srandom(uint64_t seed, uint64_t seq);
- extern void pcg32_advance(uint64_t delta);
-
-#if PCG_HAS_128BIT_OPS
- extern uint64_t pcg64_random();
- extern uint64_t pcg64_boundedrand(uint64_t bound);
- extern void pcg64_srandom(pcg128_t seed, pcg128_t seq);
- extern void pcg64_advance(pcg128_t delta);
-#endif
-
- /*
- * Static initialization constants (if you can't call srandom for some
- * bizarre reason).
- */
-
-#define PCG32_INITIALIZER PCG_STATE_SETSEQ_64_INITIALIZER
-#define PCG32U_INITIALIZER PCG_STATE_UNIQUE_64_INITIALIZER
-#define PCG32S_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER
-#define PCG32F_INITIALIZER PCG_STATE_MCG_64_INITIALIZER
-
-#if PCG_HAS_128BIT_OPS
-#define PCG64_INITIALIZER PCG_STATE_SETSEQ_128_INITIALIZER
-#define PCG64U_INITIALIZER PCG_STATE_UNIQUE_128_INITIALIZER
-#define PCG64S_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER
-#define PCG64F_INITIALIZER PCG_STATE_MCG_128_INITIALIZER
-#endif
-
-#if PCG_HAS_128BIT_OPS
-#define PCG8SI_INITIALIZER PCG_STATE_ONESEQ_8_INITIALIZER
-#define PCG16SI_INITIALIZER PCG_STATE_ONESEQ_16_INITIALIZER
-#define PCG32SI_INITIALIZER PCG_STATE_ONESEQ_32_INITIALIZER
-#define PCG64SI_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER
-#define PCG128SI_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER
-#endif
-
-#if PCG_HAS_128BIT_OPS
-#define PCG8I_INITIALIZER PCG_STATE_SETSEQ_8_INITIALIZER
-#define PCG16I_INITIALIZER PCG_STATE_SETSEQ_16_INITIALIZER
-#define PCG32I_INITIALIZER PCG_STATE_SETSEQ_32_INITIALIZER
-#define PCG64I_INITIALIZER PCG_STATE_SETSEQ_64_INITIALIZER
-#define PCG128I_INITIALIZER PCG_STATE_SETSEQ_128_INITIALIZER
-#endif
-
-#if __cplusplus
-}
-#endif
-
-#endif // PCG_VARIANTS_H_INCLUDED
-
diff --git a/src/haversine/libs/stb_sprintf.h b/src/haversine/libs/stb_sprintf.h
deleted file mode 100644
index ca432a6..0000000
--- a/src/haversine/libs/stb_sprintf.h
+++ /dev/null
@@ -1,1906 +0,0 @@
-// stb_sprintf - v1.10 - public domain snprintf() implementation
-// originally by Jeff Roberts / RAD Game Tools, 2015/10/20
-// http://github.com/nothings/stb
-//
-// allowed types: sc uidBboXx p AaGgEef n
-// lengths : hh h ll j z t I64 I32 I
-//
-// Contributors:
-// Fabian "ryg" Giesen (reformatting)
-// github:aganm (attribute format)
-//
-// Contributors (bugfixes):
-// github:d26435
-// github:trex78
-// github:account-login
-// Jari Komppa (SI suffixes)
-// Rohit Nirmal
-// Marcin Wojdyr
-// Leonard Ritter
-// Stefano Zanotti
-// Adam Allison
-// Arvid Gerstmann
-// Markus Kolb
-//
-// LICENSE:
-//
-// See end of file for license information.
-
-#ifndef STB_SPRINTF_H_INCLUDE
-#define STB_SPRINTF_H_INCLUDE
-
-/*
-Single file sprintf replacement.
-
-Originally written by Jeff Roberts at RAD Game Tools - 2015/10/20.
-Hereby placed in public domain.
-
-This is a full sprintf replacement that supports everything that
-the C runtime sprintfs support, including float/double, 64-bit integers,
-hex floats, field parameters (%*.*d stuff), length reads backs, etc.
-
-Why would you need this if sprintf already exists? Well, first off,
-it's *much* faster (see below). It's also much smaller than the CRT
-versions code-space-wise. We've also added some simple improvements
-that are super handy (commas in thousands, callbacks at buffer full,
-for example). Finally, the format strings for MSVC and GCC differ
-for 64-bit integers (among other small things), so this lets you use
-the same format strings in cross platform code.
-
-It uses the standard single file trick of being both the header file
-and the source itself. If you just include it normally, you just get
-the header file function definitions. To get the code, you include
-it from a C or C++ file and define STB_SPRINTF_IMPLEMENTATION first.
-
-It only uses va_args macros from the C runtime to do it's work. It
-does cast doubles to S64s and shifts and divides U64s, which does
-drag in CRT code on most platforms.
-
-It compiles to roughly 8K with float support, and 4K without.
-As a comparison, when using MSVC static libs, calling sprintf drags
-in 16K.
-
-API:
-====
-int stbsp_sprintf( char * buf, char const * fmt, ... )
-int stbsp_snprintf( char * buf, int count, char const * fmt, ... )
- Convert an arg list into a buffer. stbsp_snprintf always returns
- a zero-terminated string (unlike regular snprintf).
-
-int stbsp_vsprintf( char * buf, char const * fmt, va_list va )
-int stbsp_vsnprintf( char * buf, int count, char const * fmt, va_list va )
- Convert a va_list arg list into a buffer. stbsp_vsnprintf always returns
- a zero-terminated string (unlike regular snprintf).
-
-int stbsp_vsprintfcb( STBSP_SPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va )
- typedef char * STBSP_SPRINTFCB( char const * buf, void * user, int len );
- Convert into a buffer, calling back every STB_SPRINTF_MIN chars.
- Your callback can then copy the chars out, print them or whatever.
- This function is actually the workhorse for everything else.
- The buffer you pass in must hold at least STB_SPRINTF_MIN characters.
- // you return the next buffer to use or 0 to stop converting
-
-void stbsp_set_separators( char comma, char period )
- Set the comma and period characters to use.
-
-FLOATS/DOUBLES:
-===============
-This code uses a internal float->ascii conversion method that uses
-doubles with error correction (double-doubles, for ~105 bits of
-precision). This conversion is round-trip perfect - that is, an atof
-of the values output here will give you the bit-exact double back.
-
-One difference is that our insignificant digits will be different than
-with MSVC or GCC (but they don't match each other either). We also
-don't attempt to find the minimum length matching float (pre-MSVC15
-doesn't either).
-
-If you don't need float or doubles at all, define STB_SPRINTF_NOFLOAT
-and you'll save 4K of code space.
-
-64-BIT INTS:
-============
-This library also supports 64-bit integers and you can use MSVC style or
-GCC style indicators (%I64d or %lld). It supports the C99 specifiers
-for size_t and ptr_diff_t (%jd %zd) as well.
-
-EXTRAS:
-=======
-Like some GCCs, for integers and floats, you can use a ' (single quote)
-specifier and commas will be inserted on the thousands: "%'d" on 12345
-would print 12,345.
-
-For integers and floats, you can use a "$" specifier and the number
-will be converted to float and then divided to get kilo, mega, giga or
-tera and then printed, so "%$d" 1000 is "1.0 k", "%$.2d" 2536000 is
-"2.53 M", etc. For byte values, use two $:s, like "%$$d" to turn
-2536000 to "2.42 Mi". If you prefer JEDEC suffixes to SI ones, use three
-$:s: "%$$$d" -> "2.42 M". To remove the space between the number and the
-suffix, add "_" specifier: "%_$d" -> "2.53M".
-
-In addition to octal and hexadecimal conversions, you can print
-integers in binary: "%b" for 256 would print 100.
-
-PERFORMANCE vs MSVC 2008 32-/64-bit (GCC is even slower than MSVC):
-===================================================================
-"%d" across all 32-bit ints (4.8x/4.0x faster than 32-/64-bit MSVC)
-"%24d" across all 32-bit ints (4.5x/4.2x faster)
-"%x" across all 32-bit ints (4.5x/3.8x faster)
-"%08x" across all 32-bit ints (4.3x/3.8x faster)
-"%f" across e-10 to e+10 floats (7.3x/6.0x faster)
-"%e" across e-10 to e+10 floats (8.1x/6.0x faster)
-"%g" across e-10 to e+10 floats (10.0x/7.1x faster)
-"%f" for values near e-300 (7.9x/6.5x faster)
-"%f" for values near e+300 (10.0x/9.1x faster)
-"%e" for values near e-300 (10.1x/7.0x faster)
-"%e" for values near e+300 (9.2x/6.0x faster)
-"%.320f" for values near e-300 (12.6x/11.2x faster)
-"%a" for random values (8.6x/4.3x faster)
-"%I64d" for 64-bits with 32-bit values (4.8x/3.4x faster)
-"%I64d" for 64-bits > 32-bit values (4.9x/5.5x faster)
-"%s%s%s" for 64 char strings (7.1x/7.3x faster)
-"...512 char string..." ( 35.0x/32.5x faster!)
-*/
-
-#if defined(__clang__)
- #if defined(__has_feature) && defined(__has_attribute)
- #if __has_feature(address_sanitizer)
- #if __has_attribute(__no_sanitize__)
- #define STBSP__ASAN __attribute__((__no_sanitize__("address")))
- #elif __has_attribute(__no_sanitize_address__)
- #define STBSP__ASAN __attribute__((__no_sanitize_address__))
- #elif __has_attribute(__no_address_safety_analysis__)
- #define STBSP__ASAN __attribute__((__no_address_safety_analysis__))
- #endif
- #endif
- #endif
-#elif defined(__GNUC__) && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
- #if defined(__SANITIZE_ADDRESS__) && __SANITIZE_ADDRESS__
- #define STBSP__ASAN __attribute__((__no_sanitize_address__))
- #endif
-#endif
-
-#ifndef STBSP__ASAN
-#define STBSP__ASAN
-#endif
-
-#ifdef STB_SPRINTF_STATIC
-#define STBSP__PUBLICDEC static
-#define STBSP__PUBLICDEF static STBSP__ASAN
-#else
-#ifdef __cplusplus
-#define STBSP__PUBLICDEC extern "C"
-#define STBSP__PUBLICDEF extern "C" STBSP__ASAN
-#else
-#define STBSP__PUBLICDEC extern
-#define STBSP__PUBLICDEF STBSP__ASAN
-#endif
-#endif
-
-#if defined(__has_attribute)
- #if __has_attribute(format)
- #define STBSP__ATTRIBUTE_FORMAT(fmt,va) __attribute__((format(printf,fmt,va)))
- #endif
-#endif
-
-#ifndef STBSP__ATTRIBUTE_FORMAT
-#define STBSP__ATTRIBUTE_FORMAT(fmt,va)
-#endif
-
-#ifdef _MSC_VER
-#define STBSP__NOTUSED(v) (void)(v)
-#else
-#define STBSP__NOTUSED(v) (void)sizeof(v)
-#endif
-
-#include <stdarg.h> // for va_arg(), va_list()
-#include <stddef.h> // size_t, ptrdiff_t
-
-#ifndef STB_SPRINTF_MIN
-#define STB_SPRINTF_MIN 512 // how many characters per callback
-#endif
-typedef char *STBSP_SPRINTFCB(const char *buf, void *user, int len);
-
-#ifndef STB_SPRINTF_DECORATE
-#define STB_SPRINTF_DECORATE(name) stbsp_##name // define this before including if you want to change the names
-#endif
-
-STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsprintf)(char *buf, char const *fmt, va_list va);
-STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsnprintf)(char *buf, int count, char const *fmt, va_list va);
-STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(sprintf)(char *buf, char const *fmt, ...) STBSP__ATTRIBUTE_FORMAT(2,3);
-STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(snprintf)(char *buf, int count, char const *fmt, ...) STBSP__ATTRIBUTE_FORMAT(3,4);
-
-STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsprintfcb)(STBSP_SPRINTFCB *callback, void *user, char *buf, char const *fmt, va_list va);
-STBSP__PUBLICDEC void STB_SPRINTF_DECORATE(set_separators)(char comma, char period);
-
-#endif // STB_SPRINTF_H_INCLUDE
-
-#ifdef STB_SPRINTF_IMPLEMENTATION
-
-#define stbsp__uint32 unsigned int
-#define stbsp__int32 signed int
-
-#ifdef _MSC_VER
-#define stbsp__uint64 unsigned __int64
-#define stbsp__int64 signed __int64
-#else
-#define stbsp__uint64 unsigned long long
-#define stbsp__int64 signed long long
-#endif
-#define stbsp__uint16 unsigned short
-
-#ifndef stbsp__uintptr
-#if defined(__ppc64__) || defined(__powerpc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) || defined(__s390x__)
-#define stbsp__uintptr stbsp__uint64
-#else
-#define stbsp__uintptr stbsp__uint32
-#endif
-#endif
-
-#ifndef STB_SPRINTF_MSVC_MODE // used for MSVC2013 and earlier (MSVC2015 matches GCC)
-#if defined(_MSC_VER) && (_MSC_VER < 1900)
-#define STB_SPRINTF_MSVC_MODE
-#endif
-#endif
-
-#ifdef STB_SPRINTF_NOUNALIGNED // define this before inclusion to force stbsp_sprintf to always use aligned accesses
-#define STBSP__UNALIGNED(code)
-#else
-#define STBSP__UNALIGNED(code) code
-#endif
-
-#ifndef STB_SPRINTF_NOFLOAT
-// internal float utility functions
-static stbsp__int32 stbsp__real_to_str(char const **start, stbsp__uint32 *len, char *out, stbsp__int32 *decimal_pos, double value, stbsp__uint32 frac_digits);
-static stbsp__int32 stbsp__real_to_parts(stbsp__int64 *bits, stbsp__int32 *expo, double value);
-#define STBSP__SPECIAL 0x7000
-#endif
-
-static char stbsp__period = '.';
-static char stbsp__comma = ',';
-static struct
-{
- short temp; // force next field to be 2-byte aligned
- char pair[201];
-} stbsp__digitpair =
-{
- 0,
- "00010203040506070809101112131415161718192021222324"
- "25262728293031323334353637383940414243444546474849"
- "50515253545556575859606162636465666768697071727374"
- "75767778798081828384858687888990919293949596979899"
-};
-
-STBSP__PUBLICDEF void STB_SPRINTF_DECORATE(set_separators)(char pcomma, char pperiod)
-{
- stbsp__period = pperiod;
- stbsp__comma = pcomma;
-}
-
-#define STBSP__LEFTJUST 1
-#define STBSP__LEADINGPLUS 2
-#define STBSP__LEADINGSPACE 4
-#define STBSP__LEADING_0X 8
-#define STBSP__LEADINGZERO 16
-#define STBSP__INTMAX 32
-#define STBSP__TRIPLET_COMMA 64
-#define STBSP__NEGATIVE 128
-#define STBSP__METRIC_SUFFIX 256
-#define STBSP__HALFWIDTH 512
-#define STBSP__METRIC_NOSPACE 1024
-#define STBSP__METRIC_1024 2048
-#define STBSP__METRIC_JEDEC 4096
-
-static void stbsp__lead_sign(stbsp__uint32 fl, char *sign)
-{
- sign[0] = 0;
- if (fl & STBSP__NEGATIVE) {
- sign[0] = 1;
- sign[1] = '-';
- } else if (fl & STBSP__LEADINGSPACE) {
- sign[0] = 1;
- sign[1] = ' ';
- } else if (fl & STBSP__LEADINGPLUS) {
- sign[0] = 1;
- sign[1] = '+';
- }
-}
-
-static STBSP__ASAN stbsp__uint32 stbsp__strlen_limited(char const *s, stbsp__uint32 limit)
-{
- char const * sn = s;
-
- // get up to 4-byte alignment
- for (;;) {
- if (((stbsp__uintptr)sn & 3) == 0)
- break;
-
- if (!limit || *sn == 0)
- return (stbsp__uint32)(sn - s);
-
- ++sn;
- --limit;
- }
-
- // scan over 4 bytes at a time to find terminating 0
- // this will intentionally scan up to 3 bytes past the end of buffers,
- // but becase it works 4B aligned, it will never cross page boundaries
- // (hence the STBSP__ASAN markup; the over-read here is intentional
- // and harmless)
- while (limit >= 4) {
- stbsp__uint32 v = *(stbsp__uint32 *)sn;
- // bit hack to find if there's a 0 byte in there
- if ((v - 0x01010101) & (~v) & 0x80808080UL)
- break;
-
- sn += 4;
- limit -= 4;
- }
-
- // handle the last few characters to find actual size
- while (limit && *sn) {
- ++sn;
- --limit;
- }
-
- return (stbsp__uint32)(sn - s);
-}
-
-STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(vsprintfcb)(STBSP_SPRINTFCB *callback, void *user, char *buf, char const *fmt, va_list va)
-{
- static char hex[] = "0123456789abcdefxp";
- static char hexu[] = "0123456789ABCDEFXP";
- char *bf;
- char const *f;
- int tlen = 0;
-
- bf = buf;
- f = fmt;
- for (;;) {
- stbsp__int32 fw, pr, tz;
- stbsp__uint32 fl;
-
- // macros for the callback buffer stuff
- #define stbsp__chk_cb_bufL(bytes) \
- { \
- int len = (int)(bf - buf); \
- if ((len + (bytes)) >= STB_SPRINTF_MIN) { \
- tlen += len; \
- if (0 == (bf = buf = callback(buf, user, len))) \
- goto done; \
- } \
- }
- #define stbsp__chk_cb_buf(bytes) \
- { \
- if (callback) { \
- stbsp__chk_cb_bufL(bytes); \
- } \
- }
- #define stbsp__flush_cb() \
- { \
- stbsp__chk_cb_bufL(STB_SPRINTF_MIN - 1); \
- } // flush if there is even one byte in the buffer
- #define stbsp__cb_buf_clamp(cl, v) \
- cl = v; \
- if (callback) { \
- int lg = STB_SPRINTF_MIN - (int)(bf - buf); \
- if (cl > lg) \
- cl = lg; \
- }
-
- // fast copy everything up to the next % (or end of string)
- for (;;) {
- while (((stbsp__uintptr)f) & 3) {
- schk1:
- if (f[0] == '%')
- goto scandd;
- schk2:
- if (f[0] == 0)
- goto endfmt;
- stbsp__chk_cb_buf(1);
- *bf++ = f[0];
- ++f;
- }
- for (;;) {
- // Check if the next 4 bytes contain %(0x25) or end of string.
- // Using the 'hasless' trick:
- // https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
- stbsp__uint32 v, c;
- v = *(stbsp__uint32 *)f;
- c = (~v) & 0x80808080;
- if (((v ^ 0x25252525) - 0x01010101) & c)
- goto schk1;
- if ((v - 0x01010101) & c)
- goto schk2;
- if (callback)
- if ((STB_SPRINTF_MIN - (int)(bf - buf)) < 4)
- goto schk1;
- #ifdef STB_SPRINTF_NOUNALIGNED
- if(((stbsp__uintptr)bf) & 3) {
- bf[0] = f[0];
- bf[1] = f[1];
- bf[2] = f[2];
- bf[3] = f[3];
- } else
- #endif
- {
- *(stbsp__uint32 *)bf = v;
- }
- bf += 4;
- f += 4;
- }
- }
- scandd:
-
- ++f;
-
- // ok, we have a percent, read the modifiers first
- fw = 0;
- pr = -1;
- fl = 0;
- tz = 0;
-
- // flags
- for (;;) {
- switch (f[0]) {
- // if we have left justify
- case '-':
- fl |= STBSP__LEFTJUST;
- ++f;
- continue;
- // if we have leading plus
- case '+':
- fl |= STBSP__LEADINGPLUS;
- ++f;
- continue;
- // if we have leading space
- case ' ':
- fl |= STBSP__LEADINGSPACE;
- ++f;
- continue;
- // if we have leading 0x
- case '#':
- fl |= STBSP__LEADING_0X;
- ++f;
- continue;
- // if we have thousand commas
- case '\'':
- fl |= STBSP__TRIPLET_COMMA;
- ++f;
- continue;
- // if we have kilo marker (none->kilo->kibi->jedec)
- case '$':
- if (fl & STBSP__METRIC_SUFFIX) {
- if (fl & STBSP__METRIC_1024) {
- fl |= STBSP__METRIC_JEDEC;
- } else {
- fl |= STBSP__METRIC_1024;
- }
- } else {
- fl |= STBSP__METRIC_SUFFIX;
- }
- ++f;
- continue;
- // if we don't want space between metric suffix and number
- case '_':
- fl |= STBSP__METRIC_NOSPACE;
- ++f;
- continue;
- // if we have leading zero
- case '0':
- fl |= STBSP__LEADINGZERO;
- ++f;
- goto flags_done;
- default: goto flags_done;
- }
- }
- flags_done:
-
- // get the field width
- if (f[0] == '*') {
- fw = va_arg(va, stbsp__uint32);
- ++f;
- } else {
- while ((f[0] >= '0') && (f[0] <= '9')) {
- fw = fw * 10 + f[0] - '0';
- f++;
- }
- }
- // get the precision
- if (f[0] == '.') {
- ++f;
- if (f[0] == '*') {
- pr = va_arg(va, stbsp__uint32);
- ++f;
- } else {
- pr = 0;
- while ((f[0] >= '0') && (f[0] <= '9')) {
- pr = pr * 10 + f[0] - '0';
- f++;
- }
- }
- }
-
- // handle integer size overrides
- switch (f[0]) {
- // are we halfwidth?
- case 'h':
- fl |= STBSP__HALFWIDTH;
- ++f;
- if (f[0] == 'h')
- ++f; // QUARTERWIDTH
- break;
- // are we 64-bit (unix style)
- case 'l':
- fl |= ((sizeof(long) == 8) ? STBSP__INTMAX : 0);
- ++f;
- if (f[0] == 'l') {
- fl |= STBSP__INTMAX;
- ++f;
- }
- break;
- // are we 64-bit on intmax? (c99)
- case 'j':
- fl |= (sizeof(size_t) == 8) ? STBSP__INTMAX : 0;
- ++f;
- break;
- // are we 64-bit on size_t or ptrdiff_t? (c99)
- case 'z':
- fl |= (sizeof(ptrdiff_t) == 8) ? STBSP__INTMAX : 0;
- ++f;
- break;
- case 't':
- fl |= (sizeof(ptrdiff_t) == 8) ? STBSP__INTMAX : 0;
- ++f;
- break;
- // are we 64-bit (msft style)
- case 'I':
- if ((f[1] == '6') && (f[2] == '4')) {
- fl |= STBSP__INTMAX;
- f += 3;
- } else if ((f[1] == '3') && (f[2] == '2')) {
- f += 3;
- } else {
- fl |= ((sizeof(void *) == 8) ? STBSP__INTMAX : 0);
- ++f;
- }
- break;
- default: break;
- }
-
- // handle each replacement
- switch (f[0]) {
- #define STBSP__NUMSZ 512 // big enough for e308 (with commas) or e-307
- char num[STBSP__NUMSZ];
- char lead[8];
- char tail[8];
- char *s;
- char const *h;
- stbsp__uint32 l, n, cs;
- stbsp__uint64 n64;
-#ifndef STB_SPRINTF_NOFLOAT
- double fv;
-#endif
- stbsp__int32 dp;
- char const *sn;
-
- case 's':
- // get the string
- s = va_arg(va, char *);
- if (s == 0)
- s = (char *)"null";
- // get the length, limited to desired precision
- // always limit to ~0u chars since our counts are 32b
- l = stbsp__strlen_limited(s, (pr >= 0) ? pr : ~0u);
- lead[0] = 0;
- tail[0] = 0;
- pr = 0;
- dp = 0;
- cs = 0;
- // copy the string in
- goto scopy;
-
- case 'c': // char
- // get the character
- s = num + STBSP__NUMSZ - 1;
- *s = (char)va_arg(va, int);
- l = 1;
- lead[0] = 0;
- tail[0] = 0;
- pr = 0;
- dp = 0;
- cs = 0;
- goto scopy;
-
- case 'n': // weird write-bytes specifier
- {
- int *d = va_arg(va, int *);
- *d = tlen + (int)(bf - buf);
- } break;
-
-#ifdef STB_SPRINTF_NOFLOAT
- case 'A': // float
- case 'a': // hex float
- case 'G': // float
- case 'g': // float
- case 'E': // float
- case 'e': // float
- case 'f': // float
- va_arg(va, double); // eat it
- s = (char *)"No float";
- l = 8;
- lead[0] = 0;
- tail[0] = 0;
- pr = 0;
- cs = 0;
- STBSP__NOTUSED(dp);
- goto scopy;
-#else
- case 'A': // hex float
- case 'a': // hex float
- h = (f[0] == 'A') ? hexu : hex;
- fv = va_arg(va, double);
- if (pr == -1)
- pr = 6; // default is 6
- // read the double into a string
- if (stbsp__real_to_parts((stbsp__int64 *)&n64, &dp, fv))
- fl |= STBSP__NEGATIVE;
-
- s = num + 64;
-
- stbsp__lead_sign(fl, lead);
-
- if (dp == -1023)
- dp = (n64) ? -1022 : 0;
- else
- n64 |= (((stbsp__uint64)1) << 52);
- n64 <<= (64 - 56);
- if (pr < 15)
- n64 += ((((stbsp__uint64)8) << 56) >> (pr * 4));
-// add leading chars
-
-#ifdef STB_SPRINTF_MSVC_MODE
- *s++ = '0';
- *s++ = 'x';
-#else
- lead[1 + lead[0]] = '0';
- lead[2 + lead[0]] = 'x';
- lead[0] += 2;
-#endif
- *s++ = h[(n64 >> 60) & 15];
- n64 <<= 4;
- if (pr)
- *s++ = stbsp__period;
- sn = s;
-
- // print the bits
- n = pr;
- if (n > 13)
- n = 13;
- if (pr > (stbsp__int32)n)
- tz = pr - n;
- pr = 0;
- while (n--) {
- *s++ = h[(n64 >> 60) & 15];
- n64 <<= 4;
- }
-
- // print the expo
- tail[1] = h[17];
- if (dp < 0) {
- tail[2] = '-';
- dp = -dp;
- } else
- tail[2] = '+';
- n = (dp >= 1000) ? 6 : ((dp >= 100) ? 5 : ((dp >= 10) ? 4 : 3));
- tail[0] = (char)n;
- for (;;) {
- tail[n] = '0' + dp % 10;
- if (n <= 3)
- break;
- --n;
- dp /= 10;
- }
-
- dp = (int)(s - sn);
- l = (int)(s - (num + 64));
- s = num + 64;
- cs = 1 + (3 << 24);
- goto scopy;
-
- case 'G': // float
- case 'g': // float
- h = (f[0] == 'G') ? hexu : hex;
- fv = va_arg(va, double);
- if (pr == -1)
- pr = 6;
- else if (pr == 0)
- pr = 1; // default is 6
- // read the double into a string
- if (stbsp__real_to_str(&sn, &l, num, &dp, fv, (pr - 1) | 0x80000000))
- fl |= STBSP__NEGATIVE;
-
- // clamp the precision and delete extra zeros after clamp
- n = pr;
- if (l > (stbsp__uint32)pr)
- l = pr;
- while ((l > 1) && (pr) && (sn[l - 1] == '0')) {
- --pr;
- --l;
- }
-
- // should we use %e
- if ((dp <= -4) || (dp > (stbsp__int32)n)) {
- if (pr > (stbsp__int32)l)
- pr = l - 1;
- else if (pr)
- --pr; // when using %e, there is one digit before the decimal
- goto doexpfromg;
- }
- // this is the insane action to get the pr to match %g semantics for %f
- if (dp > 0) {
- pr = (dp < (stbsp__int32)l) ? l - dp : 0;
- } else {
- pr = -dp + ((pr > (stbsp__int32)l) ? (stbsp__int32) l : pr);
- }
- goto dofloatfromg;
-
- case 'E': // float
- case 'e': // float
- h = (f[0] == 'E') ? hexu : hex;
- fv = va_arg(va, double);
- if (pr == -1)
- pr = 6; // default is 6
- // read the double into a string
- if (stbsp__real_to_str(&sn, &l, num, &dp, fv, pr | 0x80000000))
- fl |= STBSP__NEGATIVE;
- doexpfromg:
- tail[0] = 0;
- stbsp__lead_sign(fl, lead);
- if (dp == STBSP__SPECIAL) {
- s = (char *)sn;
- cs = 0;
- pr = 0;
- goto scopy;
- }
- s = num + 64;
- // handle leading chars
- *s++ = sn[0];
-
- if (pr)
- *s++ = stbsp__period;
-
- // handle after decimal
- if ((l - 1) > (stbsp__uint32)pr)
- l = pr + 1;
- for (n = 1; n < l; n++)
- *s++ = sn[n];
- // trailing zeros
- tz = pr - (l - 1);
- pr = 0;
- // dump expo
- tail[1] = h[0xe];
- dp -= 1;
- if (dp < 0) {
- tail[2] = '-';
- dp = -dp;
- } else
- tail[2] = '+';
-#ifdef STB_SPRINTF_MSVC_MODE
- n = 5;
-#else
- n = (dp >= 100) ? 5 : 4;
-#endif
- tail[0] = (char)n;
- for (;;) {
- tail[n] = '0' + dp % 10;
- if (n <= 3)
- break;
- --n;
- dp /= 10;
- }
- cs = 1 + (3 << 24); // how many tens
- goto flt_lead;
-
- case 'f': // float
- fv = va_arg(va, double);
- doafloat:
- // do kilos
- if (fl & STBSP__METRIC_SUFFIX) {
- double divisor;
- divisor = 1000.0f;
- if (fl & STBSP__METRIC_1024)
- divisor = 1024.0;
- while (fl < 0x4000000) {
- if ((fv < divisor) && (fv > -divisor))
- break;
- fv /= divisor;
- fl += 0x1000000;
- }
- }
- if (pr == -1)
- pr = 6; // default is 6
- // read the double into a string
- if (stbsp__real_to_str(&sn, &l, num, &dp, fv, pr))
- fl |= STBSP__NEGATIVE;
- dofloatfromg:
- tail[0] = 0;
- stbsp__lead_sign(fl, lead);
- if (dp == STBSP__SPECIAL) {
- s = (char *)sn;
- cs = 0;
- pr = 0;
- goto scopy;
- }
- s = num + 64;
-
- // handle the three decimal varieties
- if (dp <= 0) {
- stbsp__int32 i;
- // handle 0.000*000xxxx
- *s++ = '0';
- if (pr)
- *s++ = stbsp__period;
- n = -dp;
- if ((stbsp__int32)n > pr)
- n = pr;
- i = n;
- while (i) {
- if ((((stbsp__uintptr)s) & 3) == 0)
- break;
- *s++ = '0';
- --i;
- }
- while (i >= 4) {
- *(stbsp__uint32 *)s = 0x30303030;
- s += 4;
- i -= 4;
- }
- while (i) {
- *s++ = '0';
- --i;
- }
- if ((stbsp__int32)(l + n) > pr)
- l = pr - n;
- i = l;
- while (i) {
- *s++ = *sn++;
- --i;
- }
- tz = pr - (n + l);
- cs = 1 + (3 << 24); // how many tens did we write (for commas below)
- } else {
- cs = (fl & STBSP__TRIPLET_COMMA) ? ((600 - (stbsp__uint32)dp) % 3) : 0;
- if ((stbsp__uint32)dp >= l) {
- // handle xxxx000*000.0
- n = 0;
- for (;;) {
- if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
- cs = 0;
- *s++ = stbsp__comma;
- } else {
- *s++ = sn[n];
- ++n;
- if (n >= l)
- break;
- }
- }
- if (n < (stbsp__uint32)dp) {
- n = dp - n;
- if ((fl & STBSP__TRIPLET_COMMA) == 0) {
- while (n) {
- if ((((stbsp__uintptr)s) & 3) == 0)
- break;
- *s++ = '0';
- --n;
- }
- while (n >= 4) {
- *(stbsp__uint32 *)s = 0x30303030;
- s += 4;
- n -= 4;
- }
- }
- while (n) {
- if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
- cs = 0;
- *s++ = stbsp__comma;
- } else {
- *s++ = '0';
- --n;
- }
- }
- }
- cs = (int)(s - (num + 64)) + (3 << 24); // cs is how many tens
- if (pr) {
- *s++ = stbsp__period;
- tz = pr;
- }
- } else {
- // handle xxxxx.xxxx000*000
- n = 0;
- for (;;) {
- if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
- cs = 0;
- *s++ = stbsp__comma;
- } else {
- *s++ = sn[n];
- ++n;
- if (n >= (stbsp__uint32)dp)
- break;
- }
- }
- cs = (int)(s - (num + 64)) + (3 << 24); // cs is how many tens
- if (pr)
- *s++ = stbsp__period;
- if ((l - dp) > (stbsp__uint32)pr)
- l = pr + dp;
- while (n < l) {
- *s++ = sn[n];
- ++n;
- }
- tz = pr - (l - dp);
- }
- }
- pr = 0;
-
- // handle k,m,g,t
- if (fl & STBSP__METRIC_SUFFIX) {
- char idx;
- idx = 1;
- if (fl & STBSP__METRIC_NOSPACE)
- idx = 0;
- tail[0] = idx;
- tail[1] = ' ';
- {
- if (fl >> 24) { // SI kilo is 'k', JEDEC and SI kibits are 'K'.
- if (fl & STBSP__METRIC_1024)
- tail[idx + 1] = "_KMGT"[fl >> 24];
- else
- tail[idx + 1] = "_kMGT"[fl >> 24];
- idx++;
- // If printing kibits and not in jedec, add the 'i'.
- if (fl & STBSP__METRIC_1024 && !(fl & STBSP__METRIC_JEDEC)) {
- tail[idx + 1] = 'i';
- idx++;
- }
- tail[0] = idx;
- }
- }
- };
-
- flt_lead:
- // get the length that we copied
- l = (stbsp__uint32)(s - (num + 64));
- s = num + 64;
- goto scopy;
-#endif
-
- case 'B': // upper binary
- case 'b': // lower binary
- h = (f[0] == 'B') ? hexu : hex;
- lead[0] = 0;
- if (fl & STBSP__LEADING_0X) {
- lead[0] = 2;
- lead[1] = '0';
- lead[2] = h[0xb];
- }
- l = (8 << 4) | (1 << 8);
- goto radixnum;
-
- case 'o': // octal
- h = hexu;
- lead[0] = 0;
- if (fl & STBSP__LEADING_0X) {
- lead[0] = 1;
- lead[1] = '0';
- }
- l = (3 << 4) | (3 << 8);
- goto radixnum;
-
- case 'p': // pointer
- fl |= (sizeof(void *) == 8) ? STBSP__INTMAX : 0;
- pr = sizeof(void *) * 2;
- fl &= ~STBSP__LEADINGZERO; // 'p' only prints the pointer with zeros
- // fall through - to X
-
- case 'X': // upper hex
- case 'x': // lower hex
- h = (f[0] == 'X') ? hexu : hex;
- l = (4 << 4) | (4 << 8);
- lead[0] = 0;
- if (fl & STBSP__LEADING_0X) {
- lead[0] = 2;
- lead[1] = '0';
- lead[2] = h[16];
- }
- radixnum:
- // get the number
- if (fl & STBSP__INTMAX)
- n64 = va_arg(va, stbsp__uint64);
- else
- n64 = va_arg(va, stbsp__uint32);
-
- s = num + STBSP__NUMSZ;
- dp = 0;
- // clear tail, and clear leading if value is zero
- tail[0] = 0;
- if (n64 == 0) {
- lead[0] = 0;
- if (pr == 0) {
- l = 0;
- cs = 0;
- goto scopy;
- }
- }
- // convert to string
- for (;;) {
- *--s = h[n64 & ((1 << (l >> 8)) - 1)];
- n64 >>= (l >> 8);
- if (!((n64) || ((stbsp__int32)((num + STBSP__NUMSZ) - s) < pr)))
- break;
- if (fl & STBSP__TRIPLET_COMMA) {
- ++l;
- if ((l & 15) == ((l >> 4) & 15)) {
- l &= ~15;
- *--s = stbsp__comma;
- }
- }
- };
- // get the tens and the comma pos
- cs = (stbsp__uint32)((num + STBSP__NUMSZ) - s) + ((((l >> 4) & 15)) << 24);
- // get the length that we copied
- l = (stbsp__uint32)((num + STBSP__NUMSZ) - s);
- // copy it
- goto scopy;
-
- case 'u': // unsigned
- case 'i':
- case 'd': // integer
- // get the integer and abs it
- if (fl & STBSP__INTMAX) {
- stbsp__int64 i64 = va_arg(va, stbsp__int64);
- n64 = (stbsp__uint64)i64;
- if ((f[0] != 'u') && (i64 < 0)) {
- n64 = (stbsp__uint64)-i64;
- fl |= STBSP__NEGATIVE;
- }
- } else {
- stbsp__int32 i = va_arg(va, stbsp__int32);
- n64 = (stbsp__uint32)i;
- if ((f[0] != 'u') && (i < 0)) {
- n64 = (stbsp__uint32)-i;
- fl |= STBSP__NEGATIVE;
- }
- }
-
-#ifndef STB_SPRINTF_NOFLOAT
- if (fl & STBSP__METRIC_SUFFIX) {
- if (n64 < 1024)
- pr = 0;
- else if (pr == -1)
- pr = 1;
- fv = (double)(stbsp__int64)n64;
- goto doafloat;
- }
-#endif
-
- // convert to string
- s = num + STBSP__NUMSZ;
- l = 0;
-
- for (;;) {
- // do in 32-bit chunks (avoid lots of 64-bit divides even with constant denominators)
- char *o = s - 8;
- if (n64 >= 100000000) {
- n = (stbsp__uint32)(n64 % 100000000);
- n64 /= 100000000;
- } else {
- n = (stbsp__uint32)n64;
- n64 = 0;
- }
- if ((fl & STBSP__TRIPLET_COMMA) == 0) {
- do {
- s -= 2;
- *(stbsp__uint16 *)s = *(stbsp__uint16 *)&stbsp__digitpair.pair[(n % 100) * 2];
- n /= 100;
- } while (n);
- }
- while (n) {
- if ((fl & STBSP__TRIPLET_COMMA) && (l++ == 3)) {
- l = 0;
- *--s = stbsp__comma;
- --o;
- } else {
- *--s = (char)(n % 10) + '0';
- n /= 10;
- }
- }
- if (n64 == 0) {
- if ((s[0] == '0') && (s != (num + STBSP__NUMSZ)))
- ++s;
- break;
- }
- while (s != o)
- if ((fl & STBSP__TRIPLET_COMMA) && (l++ == 3)) {
- l = 0;
- *--s = stbsp__comma;
- --o;
- } else {
- *--s = '0';
- }
- }
-
- tail[0] = 0;
- stbsp__lead_sign(fl, lead);
-
- // get the length that we copied
- l = (stbsp__uint32)((num + STBSP__NUMSZ) - s);
- if (l == 0) {
- *--s = '0';
- l = 1;
- }
- cs = l + (3 << 24);
- if (pr < 0)
- pr = 0;
-
- scopy:
- // get fw=leading/trailing space, pr=leading zeros
- if (pr < (stbsp__int32)l)
- pr = l;
- n = pr + lead[0] + tail[0] + tz;
- if (fw < (stbsp__int32)n)
- fw = n;
- fw -= n;
- pr -= l;
-
- // handle right justify and leading zeros
- if ((fl & STBSP__LEFTJUST) == 0) {
- if (fl & STBSP__LEADINGZERO) // if leading zeros, everything is in pr
- {
- pr = (fw > pr) ? fw : pr;
- fw = 0;
- } else {
- fl &= ~STBSP__TRIPLET_COMMA; // if no leading zeros, then no commas
- }
- }
-
- // copy the spaces and/or zeros
- if (fw + pr) {
- stbsp__int32 i;
- stbsp__uint32 c;
-
- // copy leading spaces (or when doing %8.4d stuff)
- if ((fl & STBSP__LEFTJUST) == 0)
- while (fw > 0) {
- stbsp__cb_buf_clamp(i, fw);
- fw -= i;
- while (i) {
- if ((((stbsp__uintptr)bf) & 3) == 0)
- break;
- *bf++ = ' ';
- --i;
- }
- while (i >= 4) {
- *(stbsp__uint32 *)bf = 0x20202020;
- bf += 4;
- i -= 4;
- }
- while (i) {
- *bf++ = ' ';
- --i;
- }
- stbsp__chk_cb_buf(1);
- }
-
- // copy leader
- sn = lead + 1;
- while (lead[0]) {
- stbsp__cb_buf_clamp(i, lead[0]);
- lead[0] -= (char)i;
- while (i) {
- *bf++ = *sn++;
- --i;
- }
- stbsp__chk_cb_buf(1);
- }
-
- // copy leading zeros
- c = cs >> 24;
- cs &= 0xffffff;
- cs = (fl & STBSP__TRIPLET_COMMA) ? ((stbsp__uint32)(c - ((pr + cs) % (c + 1)))) : 0;
- while (pr > 0) {
- stbsp__cb_buf_clamp(i, pr);
- pr -= i;
- if ((fl & STBSP__TRIPLET_COMMA) == 0) {
- while (i) {
- if ((((stbsp__uintptr)bf) & 3) == 0)
- break;
- *bf++ = '0';
- --i;
- }
- while (i >= 4) {
- *(stbsp__uint32 *)bf = 0x30303030;
- bf += 4;
- i -= 4;
- }
- }
- while (i) {
- if ((fl & STBSP__TRIPLET_COMMA) && (cs++ == c)) {
- cs = 0;
- *bf++ = stbsp__comma;
- } else
- *bf++ = '0';
- --i;
- }
- stbsp__chk_cb_buf(1);
- }
- }
-
- // copy leader if there is still one
- sn = lead + 1;
- while (lead[0]) {
- stbsp__int32 i;
- stbsp__cb_buf_clamp(i, lead[0]);
- lead[0] -= (char)i;
- while (i) {
- *bf++ = *sn++;
- --i;
- }
- stbsp__chk_cb_buf(1);
- }
-
- // copy the string
- n = l;
- while (n) {
- stbsp__int32 i;
- stbsp__cb_buf_clamp(i, n);
- n -= i;
- STBSP__UNALIGNED(while (i >= 4) {
- *(stbsp__uint32 volatile *)bf = *(stbsp__uint32 volatile *)s;
- bf += 4;
- s += 4;
- i -= 4;
- })
- while (i) {
- *bf++ = *s++;
- --i;
- }
- stbsp__chk_cb_buf(1);
- }
-
- // copy trailing zeros
- while (tz) {
- stbsp__int32 i;
- stbsp__cb_buf_clamp(i, tz);
- tz -= i;
- while (i) {
- if ((((stbsp__uintptr)bf) & 3) == 0)
- break;
- *bf++ = '0';
- --i;
- }
- while (i >= 4) {
- *(stbsp__uint32 *)bf = 0x30303030;
- bf += 4;
- i -= 4;
- }
- while (i) {
- *bf++ = '0';
- --i;
- }
- stbsp__chk_cb_buf(1);
- }
-
- // copy tail if there is one
- sn = tail + 1;
- while (tail[0]) {
- stbsp__int32 i;
- stbsp__cb_buf_clamp(i, tail[0]);
- tail[0] -= (char)i;
- while (i) {
- *bf++ = *sn++;
- --i;
- }
- stbsp__chk_cb_buf(1);
- }
-
- // handle the left justify
- if (fl & STBSP__LEFTJUST)
- if (fw > 0) {
- while (fw) {
- stbsp__int32 i;
- stbsp__cb_buf_clamp(i, fw);
- fw -= i;
- while (i) {
- if ((((stbsp__uintptr)bf) & 3) == 0)
- break;
- *bf++ = ' ';
- --i;
- }
- while (i >= 4) {
- *(stbsp__uint32 *)bf = 0x20202020;
- bf += 4;
- i -= 4;
- }
- while (i--)
- *bf++ = ' ';
- stbsp__chk_cb_buf(1);
- }
- }
- break;
-
- default: // unknown, just copy code
- s = num + STBSP__NUMSZ - 1;
- *s = f[0];
- l = 1;
- fw = fl = 0;
- lead[0] = 0;
- tail[0] = 0;
- pr = 0;
- dp = 0;
- cs = 0;
- goto scopy;
- }
- ++f;
- }
-endfmt:
-
- if (!callback)
- *bf = 0;
- else
- stbsp__flush_cb();
-
-done:
- return tlen + (int)(bf - buf);
-}
-
-// cleanup
-#undef STBSP__LEFTJUST
-#undef STBSP__LEADINGPLUS
-#undef STBSP__LEADINGSPACE
-#undef STBSP__LEADING_0X
-#undef STBSP__LEADINGZERO
-#undef STBSP__INTMAX
-#undef STBSP__TRIPLET_COMMA
-#undef STBSP__NEGATIVE
-#undef STBSP__METRIC_SUFFIX
-#undef STBSP__NUMSZ
-#undef stbsp__chk_cb_bufL
-#undef stbsp__chk_cb_buf
-#undef stbsp__flush_cb
-#undef stbsp__cb_buf_clamp
-
-// ============================================================================
-// wrapper functions
-
-STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(sprintf)(char *buf, char const *fmt, ...)
-{
- int result;
- va_list va;
- va_start(va, fmt);
- result = STB_SPRINTF_DECORATE(vsprintfcb)(0, 0, buf, fmt, va);
- va_end(va);
- return result;
-}
-
-typedef struct stbsp__context {
- char *buf;
- int count;
- int length;
- char tmp[STB_SPRINTF_MIN];
-} stbsp__context;
-
-static char *stbsp__clamp_callback(const char *buf, void *user, int len)
-{
- stbsp__context *c = (stbsp__context *)user;
- c->length += len;
-
- if (len > c->count)
- len = c->count;
-
- if (len) {
- if (buf != c->buf) {
- const char *s, *se;
- char *d;
- d = c->buf;
- s = buf;
- se = buf + len;
- do {
- *d++ = *s++;
- } while (s < se);
- }
- c->buf += len;
- c->count -= len;
- }
-
- if (c->count <= 0)
- return c->tmp;
- return (c->count >= STB_SPRINTF_MIN) ? c->buf : c->tmp; // go direct into buffer if you can
-}
-
-static char * stbsp__count_clamp_callback( const char * buf, void * user, int len )
-{
- stbsp__context * c = (stbsp__context*)user;
- (void) sizeof(buf);
-
- c->length += len;
- return c->tmp; // go direct into buffer if you can
-}
-
-STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va )
-{
- stbsp__context c;
-
- if ( (count == 0) && !buf )
- {
- c.length = 0;
-
- STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__count_clamp_callback, &c, c.tmp, fmt, va );
- }
- else
- {
- int l;
-
- c.buf = buf;
- c.count = count;
- c.length = 0;
-
- STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__clamp_callback, &c, stbsp__clamp_callback(0,&c,0), fmt, va );
-
- // zero-terminate
- l = (int)( c.buf - buf );
- if ( l >= count ) // should never be greater, only equal (or less) than count
- l = count - 1;
- buf[l] = 0;
- }
-
- return c.length;
-}
-
-STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(snprintf)(char *buf, int count, char const *fmt, ...)
-{
- int result;
- va_list va;
- va_start(va, fmt);
-
- result = STB_SPRINTF_DECORATE(vsnprintf)(buf, count, fmt, va);
- va_end(va);
-
- return result;
-}
-
-STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(vsprintf)(char *buf, char const *fmt, va_list va)
-{
- return STB_SPRINTF_DECORATE(vsprintfcb)(0, 0, buf, fmt, va);
-}
-
-// =======================================================================
-// low level float utility functions
-
-#ifndef STB_SPRINTF_NOFLOAT
-
-// copies d to bits w/ strict aliasing (this compiles to nothing on /Ox)
-#define STBSP__COPYFP(dest, src) \
- { \
- int cn; \
- for (cn = 0; cn < 8; cn++) \
- ((char *)&dest)[cn] = ((char *)&src)[cn]; \
- }
-
-// get float info
-static stbsp__int32 stbsp__real_to_parts(stbsp__int64 *bits, stbsp__int32 *expo, double value)
-{
- double d;
- stbsp__int64 b = 0;
-
- // load value and round at the frac_digits
- d = value;
-
- STBSP__COPYFP(b, d);
-
- *bits = b & ((((stbsp__uint64)1) << 52) - 1);
- *expo = (stbsp__int32)(((b >> 52) & 2047) - 1023);
-
- return (stbsp__int32)((stbsp__uint64) b >> 63);
-}
-
-static double const stbsp__bot[23] = {
- 1e+000, 1e+001, 1e+002, 1e+003, 1e+004, 1e+005, 1e+006, 1e+007, 1e+008, 1e+009, 1e+010, 1e+011,
- 1e+012, 1e+013, 1e+014, 1e+015, 1e+016, 1e+017, 1e+018, 1e+019, 1e+020, 1e+021, 1e+022
-};
-static double const stbsp__negbot[22] = {
- 1e-001, 1e-002, 1e-003, 1e-004, 1e-005, 1e-006, 1e-007, 1e-008, 1e-009, 1e-010, 1e-011,
- 1e-012, 1e-013, 1e-014, 1e-015, 1e-016, 1e-017, 1e-018, 1e-019, 1e-020, 1e-021, 1e-022
-};
-static double const stbsp__negboterr[22] = {
- -5.551115123125783e-018, -2.0816681711721684e-019, -2.0816681711721686e-020, -4.7921736023859299e-021, -8.1803053914031305e-022, 4.5251888174113741e-023,
- 4.5251888174113739e-024, -2.0922560830128471e-025, -6.2281591457779853e-026, -3.6432197315497743e-027, 6.0503030718060191e-028, 2.0113352370744385e-029,
- -3.0373745563400371e-030, 1.1806906454401013e-032, -7.7705399876661076e-032, 2.0902213275965398e-033, -7.1542424054621921e-034, -7.1542424054621926e-035,
- 2.4754073164739869e-036, 5.4846728545790429e-037, 9.2462547772103625e-038, -4.8596774326570872e-039
-};
-static double const stbsp__top[13] = {
- 1e+023, 1e+046, 1e+069, 1e+092, 1e+115, 1e+138, 1e+161, 1e+184, 1e+207, 1e+230, 1e+253, 1e+276, 1e+299
-};
-static double const stbsp__negtop[13] = {
- 1e-023, 1e-046, 1e-069, 1e-092, 1e-115, 1e-138, 1e-161, 1e-184, 1e-207, 1e-230, 1e-253, 1e-276, 1e-299
-};
-static double const stbsp__toperr[13] = {
- 8388608,
- 6.8601809640529717e+028,
- -7.253143638152921e+052,
- -4.3377296974619174e+075,
- -1.5559416129466825e+098,
- -3.2841562489204913e+121,
- -3.7745893248228135e+144,
- -1.7356668416969134e+167,
- -3.8893577551088374e+190,
- -9.9566444326005119e+213,
- 6.3641293062232429e+236,
- -5.2069140800249813e+259,
- -5.2504760255204387e+282
-};
-static double const stbsp__negtoperr[13] = {
- 3.9565301985100693e-040, -2.299904345391321e-063, 3.6506201437945798e-086, 1.1875228833981544e-109,
- -5.0644902316928607e-132, -6.7156837247865426e-155, -2.812077463003139e-178, -5.7778912386589953e-201,
- 7.4997100559334532e-224, -4.6439668915134491e-247, -6.3691100762962136e-270, -9.436808465446358e-293,
- 8.0970921678014997e-317
-};
-
-#if defined(_MSC_VER) && (_MSC_VER <= 1200)
-static stbsp__uint64 const stbsp__powten[20] = {
- 1,
- 10,
- 100,
- 1000,
- 10000,
- 100000,
- 1000000,
- 10000000,
- 100000000,
- 1000000000,
- 10000000000,
- 100000000000,
- 1000000000000,
- 10000000000000,
- 100000000000000,
- 1000000000000000,
- 10000000000000000,
- 100000000000000000,
- 1000000000000000000,
- 10000000000000000000U
-};
-#define stbsp__tento19th ((stbsp__uint64)1000000000000000000)
-#else
-static stbsp__uint64 const stbsp__powten[20] = {
- 1,
- 10,
- 100,
- 1000,
- 10000,
- 100000,
- 1000000,
- 10000000,
- 100000000,
- 1000000000,
- 10000000000ULL,
- 100000000000ULL,
- 1000000000000ULL,
- 10000000000000ULL,
- 100000000000000ULL,
- 1000000000000000ULL,
- 10000000000000000ULL,
- 100000000000000000ULL,
- 1000000000000000000ULL,
- 10000000000000000000ULL
-};
-#define stbsp__tento19th (1000000000000000000ULL)
-#endif
-
-#define stbsp__ddmulthi(oh, ol, xh, yh) \
- { \
- double ahi = 0, alo, bhi = 0, blo; \
- stbsp__int64 bt; \
- oh = xh * yh; \
- STBSP__COPYFP(bt, xh); \
- bt &= ((~(stbsp__uint64)0) << 27); \
- STBSP__COPYFP(ahi, bt); \
- alo = xh - ahi; \
- STBSP__COPYFP(bt, yh); \
- bt &= ((~(stbsp__uint64)0) << 27); \
- STBSP__COPYFP(bhi, bt); \
- blo = yh - bhi; \
- ol = ((ahi * bhi - oh) + ahi * blo + alo * bhi) + alo * blo; \
- }
-
-#define stbsp__ddtoS64(ob, xh, xl) \
- { \
- double ahi = 0, alo, vh, t; \
- ob = (stbsp__int64)xh; \
- vh = (double)ob; \
- ahi = (xh - vh); \
- t = (ahi - xh); \
- alo = (xh - (ahi - t)) - (vh + t); \
- ob += (stbsp__int64)(ahi + alo + xl); \
- }
-
-#define stbsp__ddrenorm(oh, ol) \
- { \
- double s; \
- s = oh + ol; \
- ol = ol - (s - oh); \
- oh = s; \
- }
-
-#define stbsp__ddmultlo(oh, ol, xh, xl, yh, yl) ol = ol + (xh * yl + xl * yh);
-
-#define stbsp__ddmultlos(oh, ol, xh, yl) ol = ol + (xh * yl);
-
-static void stbsp__raise_to_power10(double *ohi, double *olo, double d, stbsp__int32 power) // power can be -323 to +350
-{
- double ph, pl;
- if ((power >= 0) && (power <= 22)) {
- stbsp__ddmulthi(ph, pl, d, stbsp__bot[power]);
- } else {
- stbsp__int32 e, et, eb;
- double p2h, p2l;
-
- e = power;
- if (power < 0)
- e = -e;
- et = (e * 0x2c9) >> 14; /* %23 */
- if (et > 13)
- et = 13;
- eb = e - (et * 23);
-
- ph = d;
- pl = 0.0;
- if (power < 0) {
- if (eb) {
- --eb;
- stbsp__ddmulthi(ph, pl, d, stbsp__negbot[eb]);
- stbsp__ddmultlos(ph, pl, d, stbsp__negboterr[eb]);
- }
- if (et) {
- stbsp__ddrenorm(ph, pl);
- --et;
- stbsp__ddmulthi(p2h, p2l, ph, stbsp__negtop[et]);
- stbsp__ddmultlo(p2h, p2l, ph, pl, stbsp__negtop[et], stbsp__negtoperr[et]);
- ph = p2h;
- pl = p2l;
- }
- } else {
- if (eb) {
- e = eb;
- if (eb > 22)
- eb = 22;
- e -= eb;
- stbsp__ddmulthi(ph, pl, d, stbsp__bot[eb]);
- if (e) {
- stbsp__ddrenorm(ph, pl);
- stbsp__ddmulthi(p2h, p2l, ph, stbsp__bot[e]);
- stbsp__ddmultlos(p2h, p2l, stbsp__bot[e], pl);
- ph = p2h;
- pl = p2l;
- }
- }
- if (et) {
- stbsp__ddrenorm(ph, pl);
- --et;
- stbsp__ddmulthi(p2h, p2l, ph, stbsp__top[et]);
- stbsp__ddmultlo(p2h, p2l, ph, pl, stbsp__top[et], stbsp__toperr[et]);
- ph = p2h;
- pl = p2l;
- }
- }
- }
- stbsp__ddrenorm(ph, pl);
- *ohi = ph;
- *olo = pl;
-}
-
-// given a float value, returns the significant bits in bits, and the position of the
-// decimal point in decimal_pos. +/-INF and NAN are specified by special values
-// returned in the decimal_pos parameter.
-// frac_digits is absolute normally, but if you want from first significant digits (got %g and %e), or in 0x80000000
-static stbsp__int32 stbsp__real_to_str(char const **start, stbsp__uint32 *len, char *out, stbsp__int32 *decimal_pos, double value, stbsp__uint32 frac_digits)
-{
- double d;
- stbsp__int64 bits = 0;
- stbsp__int32 expo, e, ng, tens;
-
- d = value;
- STBSP__COPYFP(bits, d);
- expo = (stbsp__int32)((bits >> 52) & 2047);
- ng = (stbsp__int32)((stbsp__uint64) bits >> 63);
- if (ng)
- d = -d;
-
- if (expo == 2047) // is nan or inf?
- {
- *start = (bits & ((((stbsp__uint64)1) << 52) - 1)) ? "NaN" : "Inf";
- *decimal_pos = STBSP__SPECIAL;
- *len = 3;
- return ng;
- }
-
- if (expo == 0) // is zero or denormal
- {
- if (((stbsp__uint64) bits << 1) == 0) // do zero
- {
- *decimal_pos = 1;
- *start = out;
- out[0] = '0';
- *len = 1;
- return ng;
- }
- // find the right expo for denormals
- {
- stbsp__int64 v = ((stbsp__uint64)1) << 51;
- while ((bits & v) == 0) {
- --expo;
- v >>= 1;
- }
- }
- }
-
- // find the decimal exponent as well as the decimal bits of the value
- {
- double ph, pl;
-
- // log10 estimate - very specifically tweaked to hit or undershoot by no more than 1 of log10 of all expos 1..2046
- tens = expo - 1023;
- tens = (tens < 0) ? ((tens * 617) / 2048) : (((tens * 1233) / 4096) + 1);
-
- // move the significant bits into position and stick them into an int
- stbsp__raise_to_power10(&ph, &pl, d, 18 - tens);
-
- // get full as much precision from double-double as possible
- stbsp__ddtoS64(bits, ph, pl);
-
- // check if we undershot
- if (((stbsp__uint64)bits) >= stbsp__tento19th)
- ++tens;
- }
-
- // now do the rounding in integer land
- frac_digits = (frac_digits & 0x80000000) ? ((frac_digits & 0x7ffffff) + 1) : (tens + frac_digits);
- if ((frac_digits < 24)) {
- stbsp__uint32 dg = 1;
- if ((stbsp__uint64)bits >= stbsp__powten[9])
- dg = 10;
- while ((stbsp__uint64)bits >= stbsp__powten[dg]) {
- ++dg;
- if (dg == 20)
- goto noround;
- }
- if (frac_digits < dg) {
- stbsp__uint64 r;
- // add 0.5 at the right position and round
- e = dg - frac_digits;
- if ((stbsp__uint32)e >= 24)
- goto noround;
- r = stbsp__powten[e];
- bits = bits + (r / 2);
- if ((stbsp__uint64)bits >= stbsp__powten[dg])
- ++tens;
- bits /= r;
- }
- noround:;
- }
-
- // kill long trailing runs of zeros
- if (bits) {
- stbsp__uint32 n;
- for (;;) {
- if (bits <= 0xffffffff)
- break;
- if (bits % 1000)
- goto donez;
- bits /= 1000;
- }
- n = (stbsp__uint32)bits;
- while ((n % 1000) == 0)
- n /= 1000;
- bits = n;
- donez:;
- }
-
- // convert to string
- out += 64;
- e = 0;
- for (;;) {
- stbsp__uint32 n;
- char *o = out - 8;
- // do the conversion in chunks of U32s (avoid most 64-bit divides, worth it, constant denomiators be damned)
- if (bits >= 100000000) {
- n = (stbsp__uint32)(bits % 100000000);
- bits /= 100000000;
- } else {
- n = (stbsp__uint32)bits;
- bits = 0;
- }
- while (n) {
- out -= 2;
- *(stbsp__uint16 *)out = *(stbsp__uint16 *)&stbsp__digitpair.pair[(n % 100) * 2];
- n /= 100;
- e += 2;
- }
- if (bits == 0) {
- if ((e) && (out[0] == '0')) {
- ++out;
- --e;
- }
- break;
- }
- while (out != o) {
- *--out = '0';
- ++e;
- }
- }
-
- *decimal_pos = tens;
- *start = out;
- *len = e;
- return ng;
-}
-
-#undef stbsp__ddmulthi
-#undef stbsp__ddrenorm
-#undef stbsp__ddmultlo
-#undef stbsp__ddmultlos
-#undef STBSP__SPECIAL
-#undef STBSP__COPYFP
-
-#endif // STB_SPRINTF_NOFLOAT
-
-// clean up
-#undef stbsp__uint16
-#undef stbsp__uint32
-#undef stbsp__int32
-#undef stbsp__uint64
-#undef stbsp__int64
-#undef STBSP__UNALIGNED
-
-#endif // STB_SPRINTF_IMPLEMENTATION
-
-/*
-------------------------------------------------------------------------------
-This software is available under 2 licenses -- choose whichever you prefer.
-------------------------------------------------------------------------------
-ALTERNATIVE A - MIT License
-Copyright (c) 2017 Sean Barrett
-Permission is hereby granted, free of charge, to any person obtaining a copy of
-this software and associated documentation files (the "Software"), to deal in
-the Software without restriction, including without limitation the rights to
-use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
-of the Software, and to permit persons to whom the Software is furnished to do
-so, subject to the following conditions:
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
-------------------------------------------------------------------------------
-ALTERNATIVE B - Public Domain (www.unlicense.org)
-This is free and unencumbered software released into the public domain.
-Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
-software, either in source code form or as a compiled binary, for any purpose,
-commercial or non-commercial, and by any means.
-In jurisdictions that recognize copyright laws, the author or authors of this
-software dedicate any and all copyright interest in the software to the public
-domain. We make this dedication for the benefit of the public at large and to
-the detriment of our heirs and successors. We intend this dedication to be an
-overt act of relinquishment in perpetuity of all present and future rights to
-this software under copyright law.
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
-ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-------------------------------------------------------------------------------
-*/