summaryrefslogtreecommitdiff
path: root/src/haversine_generator/libs
diff options
context:
space:
mode:
Diffstat (limited to 'src/haversine_generator/libs')
-rw-r--r--src/haversine_generator/libs/listing_065.cpp39
-rw-r--r--src/haversine_generator/libs/pcg/pcg-advance-128.c64
-rw-r--r--src/haversine_generator/libs/pcg/pcg-advance-16.c62
-rw-r--r--src/haversine_generator/libs/pcg/pcg-advance-32.c62
-rw-r--r--src/haversine_generator/libs/pcg/pcg-advance-64.c62
-rw-r--r--src/haversine_generator/libs/pcg/pcg-advance-8.c62
-rw-r--r--src/haversine_generator/libs/pcg/pcg-global-32.c56
-rw-r--r--src/haversine_generator/libs/pcg/pcg-global-64.c59
-rw-r--r--src/haversine_generator/libs/pcg/pcg-output-128.c64
-rw-r--r--src/haversine_generator/libs/pcg/pcg-output-16.c60
-rw-r--r--src/haversine_generator/libs/pcg/pcg-output-32.c62
-rw-r--r--src/haversine_generator/libs/pcg/pcg-output-64.c70
-rw-r--r--src/haversine_generator/libs/pcg/pcg-output-8.c60
-rw-r--r--src/haversine_generator/libs/pcg/pcg-rngs-128.c337
-rw-r--r--src/haversine_generator/libs/pcg/pcg-rngs-16.c183
-rw-r--r--src/haversine_generator/libs/pcg/pcg-rngs-32.c187
-rw-r--r--src/haversine_generator/libs/pcg/pcg-rngs-64.c232
-rw-r--r--src/haversine_generator/libs/pcg/pcg-rngs-8.c128
-rw-r--r--src/haversine_generator/libs/pcg/pcg.c16
-rw-r--r--src/haversine_generator/libs/pcg/pcg_variants.h2213
-rw-r--r--src/haversine_generator/libs/stb_sprintf.h1906
21 files changed, 5984 insertions, 0 deletions
diff --git a/src/haversine_generator/libs/listing_065.cpp b/src/haversine_generator/libs/listing_065.cpp
new file mode 100644
index 0000000..86e087c
--- /dev/null
+++ b/src/haversine_generator/libs/listing_065.cpp
@@ -0,0 +1,39 @@
+#include <math.h>
+
+static f64 Square(f64 A)
+{
+ f64 Result = (A*A);
+ return Result;
+}
+
+static f64 RadiansFromDegrees(f64 Degrees)
+{
+ f64 Result = 0.01745329251994329577 * Degrees;
+ return Result;
+}
+
+// NOTE(casey): EarthRadius is generally expected to be 6372.8
+static f64 ReferenceHaversine(f64 X0, f64 Y0, f64 X1, f64 Y1, f64 EarthRadius)
+{
+ /* NOTE(casey): This is not meant to be a "good" way to calculate the Haversine distance.
+ Instead, it attempts to follow, as closely as possible, the formula used in the real-world
+ question on which these homework exercises are loosely based.
+ */
+
+ f64 lat1 = Y0;
+ f64 lat2 = Y1;
+ f64 lon1 = X0;
+ f64 lon2 = X1;
+
+ f64 dLat = RadiansFromDegrees(lat2 - lat1);
+ f64 dLon = RadiansFromDegrees(lon2 - lon1);
+ lat1 = RadiansFromDegrees(lat1);
+ lat2 = RadiansFromDegrees(lat2);
+
+ f64 a = Square(sin(dLat/2.0)) + cos(lat1)*cos(lat2)*Square(sin(dLon/2));
+ f64 c = 2.0*asin(sqrt(a));
+
+ f64 Result = EarthRadius * c;
+
+ return Result;
+}
diff --git a/src/haversine_generator/libs/pcg/pcg-advance-128.c b/src/haversine_generator/libs/pcg/pcg-advance-128.c
new file mode 100644
index 0000000..be72009
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-advance-128.c
@@ -0,0 +1,64 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * Repetative C code is derived using C preprocessor metaprogramming
+ * techniques.
+ */
+
+#include "pcg_variants.h"
+
+/* Multi-step advance functions (jump-ahead, jump-back)
+ *
+ * The method used here is based on Brown, "Random Number Generation
+ * with Arbitrary Stride,", Transactions of the American Nuclear
+ * Society (Nov. 1994). The algorithm is very similar to fast
+ * exponentiation.
+ *
+ * Even though delta is an unsigned integer, we can pass a
+ * signed integer to go backwards, it just goes "the long way round".
+ */
+
+#if PCG_HAS_128BIT_OPS
+pcg128_t pcg_advance_lcg_128(pcg128_t state, pcg128_t delta, pcg128_t cur_mult,
+ pcg128_t cur_plus)
+{
+ pcg128_t acc_mult = 1u;
+ pcg128_t acc_plus = 0u;
+ while (delta > 0) {
+ if (delta & 1) {
+ acc_mult *= cur_mult;
+ acc_plus = acc_plus * cur_mult + cur_plus;
+ }
+ cur_plus = (cur_mult + 1) * cur_plus;
+ cur_mult *= cur_mult;
+ delta /= 2;
+ }
+ return acc_mult * state + acc_plus;
+}
+#endif
+
diff --git a/src/haversine_generator/libs/pcg/pcg-advance-16.c b/src/haversine_generator/libs/pcg/pcg-advance-16.c
new file mode 100644
index 0000000..11461d9
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-advance-16.c
@@ -0,0 +1,62 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * Repetative C code is derived using C preprocessor metaprogramming
+ * techniques.
+ */
+
+#include "pcg_variants.h"
+
+/* Multi-step advance functions (jump-ahead, jump-back)
+ *
+ * The method used here is based on Brown, "Random Number Generation
+ * with Arbitrary Stride,", Transactions of the American Nuclear
+ * Society (Nov. 1994). The algorithm is very similar to fast
+ * exponentiation.
+ *
+ * Even though delta is an unsigned integer, we can pass a
+ * signed integer to go backwards, it just goes "the long way round".
+ */
+
+uint16_t pcg_advance_lcg_16(uint16_t state, uint16_t delta, uint16_t cur_mult,
+ uint16_t cur_plus)
+{
+ uint16_t acc_mult = 1u;
+ uint16_t acc_plus = 0u;
+ while (delta > 0) {
+ if (delta & 1) {
+ acc_mult *= cur_mult;
+ acc_plus = acc_plus * cur_mult + cur_plus;
+ }
+ cur_plus = (cur_mult + 1) * cur_plus;
+ cur_mult *= cur_mult;
+ delta /= 2;
+ }
+ return acc_mult * state + acc_plus;
+}
+
diff --git a/src/haversine_generator/libs/pcg/pcg-advance-32.c b/src/haversine_generator/libs/pcg/pcg-advance-32.c
new file mode 100644
index 0000000..76f35fc
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-advance-32.c
@@ -0,0 +1,62 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * Repetative C code is derived using C preprocessor metaprogramming
+ * techniques.
+ */
+
+#include "pcg_variants.h"
+
+/* Multi-step advance functions (jump-ahead, jump-back)
+ *
+ * The method used here is based on Brown, "Random Number Generation
+ * with Arbitrary Stride,", Transactions of the American Nuclear
+ * Society (Nov. 1994). The algorithm is very similar to fast
+ * exponentiation.
+ *
+ * Even though delta is an unsigned integer, we can pass a
+ * signed integer to go backwards, it just goes "the long way round".
+ */
+
+uint32_t pcg_advance_lcg_32(uint32_t state, uint32_t delta, uint32_t cur_mult,
+ uint32_t cur_plus)
+{
+ uint32_t acc_mult = 1u;
+ uint32_t acc_plus = 0u;
+ while (delta > 0) {
+ if (delta & 1) {
+ acc_mult *= cur_mult;
+ acc_plus = acc_plus * cur_mult + cur_plus;
+ }
+ cur_plus = (cur_mult + 1) * cur_plus;
+ cur_mult *= cur_mult;
+ delta /= 2;
+ }
+ return acc_mult * state + acc_plus;
+}
+
diff --git a/src/haversine_generator/libs/pcg/pcg-advance-64.c b/src/haversine_generator/libs/pcg/pcg-advance-64.c
new file mode 100644
index 0000000..8210e75
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-advance-64.c
@@ -0,0 +1,62 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * Repetative C code is derived using C preprocessor metaprogramming
+ * techniques.
+ */
+
+#include "pcg_variants.h"
+
+/* Multi-step advance functions (jump-ahead, jump-back)
+ *
+ * The method used here is based on Brown, "Random Number Generation
+ * with Arbitrary Stride,", Transactions of the American Nuclear
+ * Society (Nov. 1994). The algorithm is very similar to fast
+ * exponentiation.
+ *
+ * Even though delta is an unsigned integer, we can pass a
+ * signed integer to go backwards, it just goes "the long way round".
+ */
+
+uint64_t pcg_advance_lcg_64(uint64_t state, uint64_t delta, uint64_t cur_mult,
+ uint64_t cur_plus)
+{
+ uint64_t acc_mult = 1u;
+ uint64_t acc_plus = 0u;
+ while (delta > 0) {
+ if (delta & 1) {
+ acc_mult *= cur_mult;
+ acc_plus = acc_plus * cur_mult + cur_plus;
+ }
+ cur_plus = (cur_mult + 1) * cur_plus;
+ cur_mult *= cur_mult;
+ delta /= 2;
+ }
+ return acc_mult * state + acc_plus;
+}
+
diff --git a/src/haversine_generator/libs/pcg/pcg-advance-8.c b/src/haversine_generator/libs/pcg/pcg-advance-8.c
new file mode 100644
index 0000000..8280958
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-advance-8.c
@@ -0,0 +1,62 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * Repetative C code is derived using C preprocessor metaprogramming
+ * techniques.
+ */
+
+#include "pcg_variants.h"
+
+/* Multi-step advance functions (jump-ahead, jump-back)
+ *
+ * The method used here is based on Brown, "Random Number Generation
+ * with Arbitrary Stride,", Transactions of the American Nuclear
+ * Society (Nov. 1994). The algorithm is very similar to fast
+ * exponentiation.
+ *
+ * Even though delta is an unsigned integer, we can pass a
+ * signed integer to go backwards, it just goes "the long way round".
+ */
+
+uint8_t pcg_advance_lcg_8(uint8_t state, uint8_t delta, uint8_t cur_mult,
+ uint8_t cur_plus)
+{
+ uint8_t acc_mult = 1u;
+ uint8_t acc_plus = 0u;
+ while (delta > 0) {
+ if (delta & 1) {
+ acc_mult *= cur_mult;
+ acc_plus = acc_plus * cur_mult + cur_plus;
+ }
+ cur_plus = (cur_mult + 1) * cur_plus;
+ cur_mult *= cur_mult;
+ delta /= 2;
+ }
+ return acc_mult * state + acc_plus;
+}
+
diff --git a/src/haversine_generator/libs/pcg/pcg-global-32.c b/src/haversine_generator/libs/pcg/pcg-global-32.c
new file mode 100644
index 0000000..8c18e48
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-global-32.c
@@ -0,0 +1,56 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+static pcg32_random_t pcg32_global = PCG32_INITIALIZER;
+
+uint32_t pcg32_random()
+{
+ return pcg32_random_r(&pcg32_global);
+}
+
+uint32_t pcg32_boundedrand(uint32_t bound)
+{
+ return pcg32_boundedrand_r(&pcg32_global, bound);
+}
+
+void pcg32_srandom(uint64_t seed, uint64_t seq)
+{
+ pcg32_srandom_r(&pcg32_global, seed, seq);
+}
+
+void pcg32_advance(uint64_t delta)
+{
+ return pcg32_advance_r(&pcg32_global, delta);
+}
+
diff --git a/src/haversine_generator/libs/pcg/pcg-global-64.c b/src/haversine_generator/libs/pcg/pcg-global-64.c
new file mode 100644
index 0000000..26aa677
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-global-64.c
@@ -0,0 +1,59 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+#if PCG_HAS_128BIT_OPS
+
+static pcg64_random_t pcg64_global = PCG64_INITIALIZER;
+
+uint64_t pcg64_random()
+{
+ return pcg64_random_r(&pcg64_global);
+}
+
+uint64_t pcg64_boundedrand(uint64_t bound)
+{
+ return pcg64_boundedrand_r(&pcg64_global, bound);
+}
+
+void pcg64_srandom(pcg128_t seed, pcg128_t seq)
+{
+ pcg64_srandom_r(&pcg64_global, seed, seq);
+}
+
+void pcg64_advance(pcg128_t delta)
+{
+ pcg64_advance_r(&pcg64_global, delta);
+}
+
+#endif
diff --git a/src/haversine_generator/libs/pcg/pcg-output-128.c b/src/haversine_generator/libs/pcg/pcg-output-128.c
new file mode 100644
index 0000000..cb2142e
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-output-128.c
@@ -0,0 +1,64 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/*
+ * Rotate helper functions.
+ */
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t pcg_rotr_128(pcg128_t value, unsigned int rot);
+#endif
+
+/*
+ * Output functions. These are the core of the PCG generation scheme.
+ */
+
+// XSH RS
+
+// XSH RR
+
+// RXS M XS
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t pcg_output_rxs_m_xs_128_128(pcg128_t state);
+#endif
+
+// XSL RR (only defined for >= 64 bits)
+
+// XSL RR RR (only defined for >= 64 bits)
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t pcg_output_xsl_rr_rr_128_128(pcg128_t state);
+#endif
+
diff --git a/src/haversine_generator/libs/pcg/pcg-output-16.c b/src/haversine_generator/libs/pcg/pcg-output-16.c
new file mode 100644
index 0000000..c593f67
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-output-16.c
@@ -0,0 +1,60 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/*
+ * Rotate helper functions.
+ */
+
+extern inline uint16_t pcg_rotr_16(uint16_t value, unsigned int rot);
+
+/*
+ * Output functions. These are the core of the PCG generation scheme.
+ */
+
+// XSH RS
+
+extern inline uint16_t pcg_output_xsh_rs_32_16(uint32_t state);
+
+// XSH RR
+
+extern inline uint16_t pcg_output_xsh_rr_32_16(uint32_t state);
+
+// RXS M XS
+
+extern inline uint16_t pcg_output_rxs_m_xs_16_16(uint16_t state);
+
+// XSL RR (only defined for >= 64 bits)
+
+// XSL RR RR (only defined for >= 64 bits)
+
diff --git a/src/haversine_generator/libs/pcg/pcg-output-32.c b/src/haversine_generator/libs/pcg/pcg-output-32.c
new file mode 100644
index 0000000..e291c36
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-output-32.c
@@ -0,0 +1,62 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/*
+ * Rotate helper functions.
+ */
+
+extern inline uint32_t pcg_rotr_32(uint32_t value, unsigned int rot);
+
+/*
+ * Output functions. These are the core of the PCG generation scheme.
+ */
+
+// XSH RS
+
+extern inline uint32_t pcg_output_xsh_rs_64_32(uint64_t state);
+
+// XSH RR
+
+extern inline uint32_t pcg_output_xsh_rr_64_32(uint64_t state);
+
+// RXS M XS
+
+extern inline uint32_t pcg_output_rxs_m_xs_32_32(uint32_t state);
+
+// XSL RR (only defined for >= 64 bits)
+
+extern inline uint32_t pcg_output_xsl_rr_64_32(uint64_t state);
+
+// XSL RR RR (only defined for >= 64 bits)
+
diff --git a/src/haversine_generator/libs/pcg/pcg-output-64.c b/src/haversine_generator/libs/pcg/pcg-output-64.c
new file mode 100644
index 0000000..8c6b7e4
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-output-64.c
@@ -0,0 +1,70 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/*
+ * Rotate helper functions.
+ */
+
+extern inline uint64_t pcg_rotr_64(uint64_t value, unsigned int rot);
+
+/*
+ * Output functions. These are the core of the PCG generation scheme.
+ */
+
+// XSH RS
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t pcg_output_xsh_rs_128_64(pcg128_t state);
+#endif
+
+// XSH RR
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t pcg_output_xsh_rr_128_64(pcg128_t state);
+#endif
+
+// RXS M XS
+
+extern inline uint64_t pcg_output_rxs_m_xs_64_64(uint64_t state);
+
+// XSL RR (only defined for >= 64 bits)
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t pcg_output_xsl_rr_128_64(pcg128_t state);
+#endif
+
+// XSL RR RR (only defined for >= 64 bits)
+
+extern inline uint64_t pcg_output_xsl_rr_rr_64_64(uint64_t state);
+
diff --git a/src/haversine_generator/libs/pcg/pcg-output-8.c b/src/haversine_generator/libs/pcg/pcg-output-8.c
new file mode 100644
index 0000000..83fe449
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-output-8.c
@@ -0,0 +1,60 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/*
+ * Rotate helper functions.
+ */
+
+extern inline uint8_t pcg_rotr_8(uint8_t value, unsigned int rot);
+
+/*
+ * Output functions. These are the core of the PCG generation scheme.
+ */
+
+// XSH RS
+
+extern inline uint8_t pcg_output_xsh_rs_16_8(uint16_t state);
+
+// XSH RR
+
+extern inline uint8_t pcg_output_xsh_rr_16_8(uint16_t state);
+
+// RXS M XS
+
+extern inline uint8_t pcg_output_rxs_m_xs_8_8(uint8_t state);
+
+// XSL RR (only defined for >= 64 bits)
+
+// XSL RR RR (only defined for >= 64 bits)
+
diff --git a/src/haversine_generator/libs/pcg/pcg-rngs-128.c b/src/haversine_generator/libs/pcg/pcg-rngs-128.c
new file mode 100644
index 0000000..8023589
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-rngs-128.c
@@ -0,0 +1,337 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/* Functions to advance the underlying LCG, one version for each size and
+ * each style. These functions are considered semi-private. There is rarely
+ * a good reason to call them directly.
+ */
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_oneseq_128_step_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_oneseq_128_advance_r(struct pcg_state_128* rng,
+ pcg128_t delta);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_mcg_128_step_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_mcg_128_advance_r(struct pcg_state_128* rng,
+ pcg128_t delta);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_unique_128_step_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_unique_128_advance_r(struct pcg_state_128* rng,
+ pcg128_t delta);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_setseq_128_step_r(struct pcg_state_setseq_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_setseq_128_advance_r(struct pcg_state_setseq_128* rng,
+ pcg128_t delta);
+#endif
+
+/* Functions to seed the RNG state, one version for each size and each
+ * style. Unlike the step functions, regular users can and should call
+ * these functions.
+ */
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_oneseq_128_srandom_r(struct pcg_state_128* rng,
+ pcg128_t initstate);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_mcg_128_srandom_r(struct pcg_state_128* rng,
+ pcg128_t initstate);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_unique_128_srandom_r(struct pcg_state_128* rng,
+ pcg128_t initstate);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline void pcg_setseq_128_srandom_r(struct pcg_state_setseq_128* rng,
+ pcg128_t initstate,
+ pcg128_t initseq);
+#endif
+
+/* Now, finally we create each of the individual generators. We provide
+ * a random_r function that provides a random number of the appropriate
+ * type (using the full range of the type) and a boundedrand_r version
+ * that provides
+ *
+ * Implementation notes for boundedrand_r:
+ *
+ * To avoid bias, we need to make the range of the RNG a multiple of
+ * bound, which we do by dropping output less than a threshold.
+ * Let's consider a 32-bit case... A naive scheme to calculate the
+ * threshold would be to do
+ *
+ * uint32_t threshold = 0x100000000ull % bound;
+ *
+ * but 64-bit div/mod is slower than 32-bit div/mod (especially on
+ * 32-bit platforms). In essence, we do
+ *
+ * uint32_t threshold = (0x100000000ull-bound) % bound;
+ *
+ * because this version will calculate the same modulus, but the LHS
+ * value is less than 2^32.
+ *
+ * (Note that using modulo is only wise for good RNGs, poorer RNGs
+ * such as raw LCGs do better using a technique based on division.)
+ * Empricical tests show that division is preferable to modulus for
+ * reducting the range of an RNG. It's faster, and sometimes it can
+ * even be statistically prefereable.
+ */
+
+/* Generation functions for XSH RS */
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_oneseq_128_xsh_rs_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_oneseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_unique_128_xsh_rs_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_unique_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_setseq_128_xsh_rs_64_random_r(struct pcg_state_setseq_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_setseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_setseq_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_mcg_128_xsh_rs_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_mcg_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng, uint64_t bound);
+#endif
+
+/* Generation functions for XSH RR */
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_oneseq_128_xsh_rr_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_oneseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_unique_128_xsh_rr_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_unique_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_setseq_128_xsh_rr_64_random_r(struct pcg_state_setseq_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_setseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_mcg_128_xsh_rr_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_mcg_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng, uint64_t bound);
+#endif
+
+/* Generation functions for RXS M XS (no MCG versions because they
+ * don't make sense when you want to use the entire state)
+ */
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_oneseq_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_oneseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng,
+ pcg128_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_unique_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_unique_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng,
+ pcg128_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_setseq_128_rxs_m_xs_128_random_r(struct pcg_state_setseq_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_setseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_setseq_128* rng,
+ pcg128_t bound);
+#endif
+
+/* Generation functions for XSL RR (only defined for "large" types) */
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_oneseq_128_xsl_rr_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_oneseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_unique_128_xsl_rr_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_unique_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_setseq_128_xsl_rr_64_random_r(struct pcg_state_setseq_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_setseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng,
+ uint64_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_mcg_128_xsl_rr_64_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline uint64_t
+pcg_mcg_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng, uint64_t bound);
+#endif
+
+/* Generation functions for XSL RR RR (only defined for "large" types) */
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_oneseq_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_oneseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng,
+ pcg128_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_unique_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_unique_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng,
+ pcg128_t bound);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_setseq_128_xsl_rr_rr_128_random_r(struct pcg_state_setseq_128* rng);
+#endif
+
+#if PCG_HAS_128BIT_OPS
+extern inline pcg128_t
+pcg_setseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_setseq_128* rng,
+ pcg128_t bound);
+#endif
+
diff --git a/src/haversine_generator/libs/pcg/pcg-rngs-16.c b/src/haversine_generator/libs/pcg/pcg-rngs-16.c
new file mode 100644
index 0000000..6d4e9b6
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-rngs-16.c
@@ -0,0 +1,183 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/* Functions to advance the underlying LCG, one version for each size and
+ * each style. These functions are considered semi-private. There is rarely
+ * a good reason to call them directly.
+ */
+
+extern inline void pcg_oneseq_16_step_r(struct pcg_state_16* rng);
+
+extern inline void pcg_oneseq_16_advance_r(struct pcg_state_16* rng,
+ uint16_t delta);
+
+extern inline void pcg_mcg_16_step_r(struct pcg_state_16* rng);
+
+extern inline void pcg_mcg_16_advance_r(struct pcg_state_16* rng,
+ uint16_t delta);
+
+extern inline void pcg_unique_16_step_r(struct pcg_state_16* rng);
+
+extern inline void pcg_unique_16_advance_r(struct pcg_state_16* rng,
+ uint16_t delta);
+
+extern inline void pcg_setseq_16_step_r(struct pcg_state_setseq_16* rng);
+
+extern inline void pcg_setseq_16_advance_r(struct pcg_state_setseq_16* rng,
+ uint16_t delta);
+
+/* Functions to seed the RNG state, one version for each size and each
+ * style. Unlike the step functions, regular users can and should call
+ * these functions.
+ */
+
+extern inline void pcg_oneseq_16_srandom_r(struct pcg_state_16* rng,
+ uint16_t initstate);
+
+extern inline void pcg_mcg_16_srandom_r(struct pcg_state_16* rng,
+ uint16_t initstate);
+
+extern inline void pcg_unique_16_srandom_r(struct pcg_state_16* rng,
+ uint16_t initstate);
+
+extern inline void pcg_setseq_16_srandom_r(struct pcg_state_setseq_16* rng,
+ uint16_t initstate,
+ uint16_t initseq);
+
+/* Now, finally we create each of the individual generators. We provide
+ * a random_r function that provides a random number of the appropriate
+ * type (using the full range of the type) and a boundedrand_r version
+ * that provides
+ *
+ * Implementation notes for boundedrand_r:
+ *
+ * To avoid bias, we need to make the range of the RNG a multiple of
+ * bound, which we do by dropping output less than a threshold.
+ * Let's consider a 32-bit case... A naive scheme to calculate the
+ * threshold would be to do
+ *
+ * uint32_t threshold = 0x100000000ull % bound;
+ *
+ * but 64-bit div/mod is slower than 32-bit div/mod (especially on
+ * 32-bit platforms). In essence, we do
+ *
+ * uint32_t threshold = (0x100000000ull-bound) % bound;
+ *
+ * because this version will calculate the same modulus, but the LHS
+ * value is less than 2^32.
+ *
+ * (Note that using modulo is only wise for good RNGs, poorer RNGs
+ * such as raw LCGs do better using a technique based on division.)
+ * Empricical tests show that division is preferable to modulus for
+ * reducting the range of an RNG. It's faster, and sometimes it can
+ * even be statistically prefereable.
+ */
+
+/* Generation functions for XSH RS */
+
+extern inline uint8_t pcg_oneseq_16_xsh_rs_8_random_r(struct pcg_state_16* rng);
+
+extern inline uint8_t
+pcg_oneseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
+
+extern inline uint8_t pcg_unique_16_xsh_rs_8_random_r(struct pcg_state_16* rng);
+
+extern inline uint8_t
+pcg_unique_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
+
+extern inline uint8_t
+pcg_setseq_16_xsh_rs_8_random_r(struct pcg_state_setseq_16* rng);
+
+extern inline uint8_t
+pcg_setseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_setseq_16* rng,
+ uint8_t bound);
+
+extern inline uint8_t pcg_mcg_16_xsh_rs_8_random_r(struct pcg_state_16* rng);
+
+extern inline uint8_t
+pcg_mcg_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
+
+/* Generation functions for XSH RR */
+
+extern inline uint8_t pcg_oneseq_16_xsh_rr_8_random_r(struct pcg_state_16* rng);
+
+extern inline uint8_t
+pcg_oneseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
+
+extern inline uint8_t pcg_unique_16_xsh_rr_8_random_r(struct pcg_state_16* rng);
+
+extern inline uint8_t
+pcg_unique_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
+
+extern inline uint8_t
+pcg_setseq_16_xsh_rr_8_random_r(struct pcg_state_setseq_16* rng);
+
+extern inline uint8_t
+pcg_setseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_setseq_16* rng,
+ uint8_t bound);
+
+extern inline uint8_t pcg_mcg_16_xsh_rr_8_random_r(struct pcg_state_16* rng);
+
+extern inline uint8_t
+pcg_mcg_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, uint8_t bound);
+
+/* Generation functions for RXS M XS (no MCG versions because they
+ * don't make sense when you want to use the entire state)
+ */
+
+extern inline uint16_t
+pcg_oneseq_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng);
+
+extern inline uint16_t
+pcg_oneseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng,
+ uint16_t bound);
+
+extern inline uint16_t
+pcg_unique_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng);
+
+extern inline uint16_t
+pcg_unique_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng,
+ uint16_t bound);
+
+extern inline uint16_t
+pcg_setseq_16_rxs_m_xs_16_random_r(struct pcg_state_setseq_16* rng);
+
+extern inline uint16_t
+pcg_setseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_setseq_16* rng,
+ uint16_t bound);
+
+/* Generation functions for XSL RR (only defined for "large" types) */
+
+/* Generation functions for XSL RR RR (only defined for "large" types) */
+
diff --git a/src/haversine_generator/libs/pcg/pcg-rngs-32.c b/src/haversine_generator/libs/pcg/pcg-rngs-32.c
new file mode 100644
index 0000000..1c8da7e
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-rngs-32.c
@@ -0,0 +1,187 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/* Functions to advance the underlying LCG, one version for each size and
+ * each style. These functions are considered semi-private. There is rarely
+ * a good reason to call them directly.
+ */
+
+extern inline void pcg_oneseq_32_step_r(struct pcg_state_32* rng);
+
+extern inline void pcg_oneseq_32_advance_r(struct pcg_state_32* rng,
+ uint32_t delta);
+
+extern inline void pcg_mcg_32_step_r(struct pcg_state_32* rng);
+
+extern inline void pcg_mcg_32_advance_r(struct pcg_state_32* rng,
+ uint32_t delta);
+
+extern inline void pcg_unique_32_step_r(struct pcg_state_32* rng);
+
+extern inline void pcg_unique_32_advance_r(struct pcg_state_32* rng,
+ uint32_t delta);
+
+extern inline void pcg_setseq_32_step_r(struct pcg_state_setseq_32* rng);
+
+extern inline void pcg_setseq_32_advance_r(struct pcg_state_setseq_32* rng,
+ uint32_t delta);
+
+/* Functions to seed the RNG state, one version for each size and each
+ * style. Unlike the step functions, regular users can and should call
+ * these functions.
+ */
+
+extern inline void pcg_oneseq_32_srandom_r(struct pcg_state_32* rng,
+ uint32_t initstate);
+
+extern inline void pcg_mcg_32_srandom_r(struct pcg_state_32* rng,
+ uint32_t initstate);
+
+extern inline void pcg_unique_32_srandom_r(struct pcg_state_32* rng,
+ uint32_t initstate);
+
+extern inline void pcg_setseq_32_srandom_r(struct pcg_state_setseq_32* rng,
+ uint32_t initstate,
+ uint32_t initseq);
+
+/* Now, finally we create each of the individual generators. We provide
+ * a random_r function that provides a random number of the appropriate
+ * type (using the full range of the type) and a boundedrand_r version
+ * that provides
+ *
+ * Implementation notes for boundedrand_r:
+ *
+ * To avoid bias, we need to make the range of the RNG a multiple of
+ * bound, which we do by dropping output less than a threshold.
+ * Let's consider a 32-bit case... A naive scheme to calculate the
+ * threshold would be to do
+ *
+ * uint32_t threshold = 0x100000000ull % bound;
+ *
+ * but 64-bit div/mod is slower than 32-bit div/mod (especially on
+ * 32-bit platforms). In essence, we do
+ *
+ * uint32_t threshold = (0x100000000ull-bound) % bound;
+ *
+ * because this version will calculate the same modulus, but the LHS
+ * value is less than 2^32.
+ *
+ * (Note that using modulo is only wise for good RNGs, poorer RNGs
+ * such as raw LCGs do better using a technique based on division.)
+ * Empricical tests show that division is preferable to modulus for
+ * reducting the range of an RNG. It's faster, and sometimes it can
+ * even be statistically prefereable.
+ */
+
+/* Generation functions for XSH RS */
+
+extern inline uint16_t
+pcg_oneseq_32_xsh_rs_16_random_r(struct pcg_state_32* rng);
+
+extern inline uint16_t
+pcg_oneseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
+
+extern inline uint16_t
+pcg_unique_32_xsh_rs_16_random_r(struct pcg_state_32* rng);
+
+extern inline uint16_t
+pcg_unique_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
+
+extern inline uint16_t
+pcg_setseq_32_xsh_rs_16_random_r(struct pcg_state_setseq_32* rng);
+
+extern inline uint16_t
+pcg_setseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_setseq_32* rng,
+ uint16_t bound);
+
+extern inline uint16_t pcg_mcg_32_xsh_rs_16_random_r(struct pcg_state_32* rng);
+
+extern inline uint16_t
+pcg_mcg_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
+
+/* Generation functions for XSH RR */
+
+extern inline uint16_t
+pcg_oneseq_32_xsh_rr_16_random_r(struct pcg_state_32* rng);
+
+extern inline uint16_t
+pcg_oneseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
+
+extern inline uint16_t
+pcg_unique_32_xsh_rr_16_random_r(struct pcg_state_32* rng);
+
+extern inline uint16_t
+pcg_unique_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
+
+extern inline uint16_t
+pcg_setseq_32_xsh_rr_16_random_r(struct pcg_state_setseq_32* rng);
+
+extern inline uint16_t
+pcg_setseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_setseq_32* rng,
+ uint16_t bound);
+
+extern inline uint16_t pcg_mcg_32_xsh_rr_16_random_r(struct pcg_state_32* rng);
+
+extern inline uint16_t
+pcg_mcg_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, uint16_t bound);
+
+/* Generation functions for RXS M XS (no MCG versions because they
+ * don't make sense when you want to use the entire state)
+ */
+
+extern inline uint32_t
+pcg_oneseq_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng);
+
+extern inline uint32_t
+pcg_oneseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng,
+ uint32_t bound);
+
+extern inline uint32_t
+pcg_unique_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng);
+
+extern inline uint32_t
+pcg_unique_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng,
+ uint32_t bound);
+
+extern inline uint32_t
+pcg_setseq_32_rxs_m_xs_32_random_r(struct pcg_state_setseq_32* rng);
+
+extern inline uint32_t
+pcg_setseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_setseq_32* rng,
+ uint32_t bound);
+
+/* Generation functions for XSL RR (only defined for "large" types) */
+
+/* Generation functions for XSL RR RR (only defined for "large" types) */
+
diff --git a/src/haversine_generator/libs/pcg/pcg-rngs-64.c b/src/haversine_generator/libs/pcg/pcg-rngs-64.c
new file mode 100644
index 0000000..cc0ff2c
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-rngs-64.c
@@ -0,0 +1,232 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/* Functions to advance the underlying LCG, one version for each size and
+ * each style. These functions are considered semi-private. There is rarely
+ * a good reason to call them directly.
+ */
+
+extern inline void pcg_oneseq_64_step_r(struct pcg_state_64* rng);
+
+extern inline void pcg_oneseq_64_advance_r(struct pcg_state_64* rng,
+ uint64_t delta);
+
+extern inline void pcg_mcg_64_step_r(struct pcg_state_64* rng);
+
+extern inline void pcg_mcg_64_advance_r(struct pcg_state_64* rng,
+ uint64_t delta);
+
+extern inline void pcg_unique_64_step_r(struct pcg_state_64* rng);
+
+extern inline void pcg_unique_64_advance_r(struct pcg_state_64* rng,
+ uint64_t delta);
+
+extern inline void pcg_setseq_64_step_r(struct pcg_state_setseq_64* rng);
+
+extern inline void pcg_setseq_64_advance_r(struct pcg_state_setseq_64* rng,
+ uint64_t delta);
+
+/* Functions to seed the RNG state, one version for each size and each
+ * style. Unlike the step functions, regular users can and should call
+ * these functions.
+ */
+
+extern inline void pcg_oneseq_64_srandom_r(struct pcg_state_64* rng,
+ uint64_t initstate);
+
+extern inline void pcg_mcg_64_srandom_r(struct pcg_state_64* rng,
+ uint64_t initstate);
+
+extern inline void pcg_unique_64_srandom_r(struct pcg_state_64* rng,
+ uint64_t initstate);
+
+extern inline void pcg_setseq_64_srandom_r(struct pcg_state_setseq_64* rng,
+ uint64_t initstate,
+ uint64_t initseq);
+
+/* Now, finally we create each of the individual generators. We provide
+ * a random_r function that provides a random number of the appropriate
+ * type (using the full range of the type) and a boundedrand_r version
+ * that provides
+ *
+ * Implementation notes for boundedrand_r:
+ *
+ * To avoid bias, we need to make the range of the RNG a multiple of
+ * bound, which we do by dropping output less than a threshold.
+ * Let's consider a 32-bit case... A naive scheme to calculate the
+ * threshold would be to do
+ *
+ * uint32_t threshold = 0x100000000ull % bound;
+ *
+ * but 64-bit div/mod is slower than 32-bit div/mod (especially on
+ * 32-bit platforms). In essence, we do
+ *
+ * uint32_t threshold = (0x100000000ull-bound) % bound;
+ *
+ * because this version will calculate the same modulus, but the LHS
+ * value is less than 2^32.
+ *
+ * (Note that using modulo is only wise for good RNGs, poorer RNGs
+ * such as raw LCGs do better using a technique based on division.)
+ * Empricical tests show that division is preferable to modulus for
+ * reducting the range of an RNG. It's faster, and sometimes it can
+ * even be statistically prefereable.
+ */
+
+/* Generation functions for XSH RS */
+
+extern inline uint32_t
+pcg_oneseq_64_xsh_rs_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_oneseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+extern inline uint32_t
+pcg_unique_64_xsh_rs_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_unique_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+extern inline uint32_t
+pcg_setseq_64_xsh_rs_32_random_r(struct pcg_state_setseq_64* rng);
+
+extern inline uint32_t
+pcg_setseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint32_t bound);
+
+extern inline uint32_t pcg_mcg_64_xsh_rs_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_mcg_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+/* Generation functions for XSH RR */
+
+extern inline uint32_t
+pcg_oneseq_64_xsh_rr_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_oneseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+extern inline uint32_t
+pcg_unique_64_xsh_rr_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_unique_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+extern inline uint32_t
+pcg_setseq_64_xsh_rr_32_random_r(struct pcg_state_setseq_64* rng);
+
+extern inline uint32_t
+pcg_setseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint32_t bound);
+
+extern inline uint32_t pcg_mcg_64_xsh_rr_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_mcg_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+/* Generation functions for RXS M XS (no MCG versions because they
+ * don't make sense when you want to use the entire state)
+ */
+
+extern inline uint64_t
+pcg_oneseq_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng);
+
+extern inline uint64_t
+pcg_oneseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng,
+ uint64_t bound);
+
+extern inline uint64_t
+pcg_unique_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng);
+
+extern inline uint64_t
+pcg_unique_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng,
+ uint64_t bound);
+
+extern inline uint64_t
+pcg_setseq_64_rxs_m_xs_64_random_r(struct pcg_state_setseq_64* rng);
+
+extern inline uint64_t
+pcg_setseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint64_t bound);
+
+/* Generation functions for XSL RR (only defined for "large" types) */
+
+extern inline uint32_t
+pcg_oneseq_64_xsl_rr_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_oneseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+extern inline uint32_t
+pcg_unique_64_xsl_rr_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_unique_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+extern inline uint32_t
+pcg_setseq_64_xsl_rr_32_random_r(struct pcg_state_setseq_64* rng);
+
+extern inline uint32_t
+pcg_setseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint32_t bound);
+
+extern inline uint32_t pcg_mcg_64_xsl_rr_32_random_r(struct pcg_state_64* rng);
+
+extern inline uint32_t
+pcg_mcg_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, uint32_t bound);
+
+/* Generation functions for XSL RR RR (only defined for "large" types) */
+
+extern inline uint64_t
+pcg_oneseq_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng);
+
+extern inline uint64_t
+pcg_oneseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng,
+ uint64_t bound);
+
+extern inline uint64_t
+pcg_unique_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng);
+
+extern inline uint64_t
+pcg_unique_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng,
+ uint64_t bound);
+
+extern inline uint64_t
+pcg_setseq_64_xsl_rr_rr_64_random_r(struct pcg_state_setseq_64* rng);
+
+extern inline uint64_t
+pcg_setseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint64_t bound);
+
diff --git a/src/haversine_generator/libs/pcg/pcg-rngs-8.c b/src/haversine_generator/libs/pcg/pcg-rngs-8.c
new file mode 100644
index 0000000..8779aac
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg-rngs-8.c
@@ -0,0 +1,128 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * The contents of this file were mechanically derived from pcg_variants.h
+ * (every inline function defined there gets an exern declaration here).
+ */
+
+#include "pcg_variants.h"
+
+/* Functions to advance the underlying LCG, one version for each size and
+ * each style. These functions are considered semi-private. There is rarely
+ * a good reason to call them directly.
+ */
+
+extern inline void pcg_oneseq_8_step_r(struct pcg_state_8* rng);
+
+extern inline void pcg_oneseq_8_advance_r(struct pcg_state_8* rng,
+ uint8_t delta);
+
+extern inline void pcg_mcg_8_step_r(struct pcg_state_8* rng);
+
+extern inline void pcg_mcg_8_advance_r(struct pcg_state_8* rng, uint8_t delta);
+
+extern inline void pcg_unique_8_step_r(struct pcg_state_8* rng);
+
+extern inline void pcg_unique_8_advance_r(struct pcg_state_8* rng,
+ uint8_t delta);
+
+extern inline void pcg_setseq_8_step_r(struct pcg_state_setseq_8* rng);
+
+extern inline void pcg_setseq_8_advance_r(struct pcg_state_setseq_8* rng,
+ uint8_t delta);
+
+/* Functions to seed the RNG state, one version for each size and each
+ * style. Unlike the step functions, regular users can and should call
+ * these functions.
+ */
+
+extern inline void pcg_oneseq_8_srandom_r(struct pcg_state_8* rng,
+ uint8_t initstate);
+
+extern inline void pcg_mcg_8_srandom_r(struct pcg_state_8* rng,
+ uint8_t initstate);
+
+extern inline void pcg_unique_8_srandom_r(struct pcg_state_8* rng,
+ uint8_t initstate);
+
+extern inline void pcg_setseq_8_srandom_r(struct pcg_state_setseq_8* rng,
+ uint8_t initstate, uint8_t initseq);
+
+/* Now, finally we create each of the individual generators. We provide
+ * a random_r function that provides a random number of the appropriate
+ * type (using the full range of the type) and a boundedrand_r version
+ * that provides
+ *
+ * Implementation notes for boundedrand_r:
+ *
+ * To avoid bias, we need to make the range of the RNG a multiple of
+ * bound, which we do by dropping output less than a threshold.
+ * Let's consider a 32-bit case... A naive scheme to calculate the
+ * threshold would be to do
+ *
+ * uint32_t threshold = 0x100000000ull % bound;
+ *
+ * but 64-bit div/mod is slower than 32-bit div/mod (especially on
+ * 32-bit platforms). In essence, we do
+ *
+ * uint32_t threshold = (0x100000000ull-bound) % bound;
+ *
+ * because this version will calculate the same modulus, but the LHS
+ * value is less than 2^32.
+ *
+ * (Note that using modulo is only wise for good RNGs, poorer RNGs
+ * such as raw LCGs do better using a technique based on division.)
+ * Empricical tests show that division is preferable to modulus for
+ * reducting the range of an RNG. It's faster, and sometimes it can
+ * even be statistically prefereable.
+ */
+
+/* Generation functions for XSH RS */
+
+/* Generation functions for XSH RR */
+
+/* Generation functions for RXS M XS (no MCG versions because they
+ * don't make sense when you want to use the entire state)
+ */
+
+extern inline uint8_t pcg_oneseq_8_rxs_m_xs_8_random_r(struct pcg_state_8* rng);
+
+extern inline uint8_t
+pcg_oneseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_8* rng, uint8_t bound);
+
+extern inline uint8_t
+pcg_setseq_8_rxs_m_xs_8_random_r(struct pcg_state_setseq_8* rng);
+
+extern inline uint8_t
+pcg_setseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_setseq_8* rng,
+ uint8_t bound);
+
+/* Generation functions for XSL RR (only defined for "large" types) */
+
+/* Generation functions for XSL RR RR (only defined for "large" types) */
+
diff --git a/src/haversine_generator/libs/pcg/pcg.c b/src/haversine_generator/libs/pcg/pcg.c
new file mode 100644
index 0000000..cf29e6d
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg.c
@@ -0,0 +1,16 @@
+#include "pcg_variants.h"
+#include "pcg-advance-128.c"
+#include "pcg-advance-16.c"
+#include "pcg-advance-32.c"
+#include "pcg-advance-64.c"
+#include "pcg-advance-8.c"
+#include "pcg-output-128.c"
+#include "pcg-output-16.c"
+#include "pcg-output-32.c"
+#include "pcg-output-64.c"
+#include "pcg-output-8.c"
+#include "pcg-rngs-128.c"
+#include "pcg-rngs-16.c"
+#include "pcg-rngs-32.c"
+#include "pcg-rngs-64.c"
+#include "pcg-rngs-8.c"
diff --git a/src/haversine_generator/libs/pcg/pcg_variants.h b/src/haversine_generator/libs/pcg/pcg_variants.h
new file mode 100644
index 0000000..83edae8
--- /dev/null
+++ b/src/haversine_generator/libs/pcg/pcg_variants.h
@@ -0,0 +1,2213 @@
+/*
+ * PCG Random Number Generation for C.
+ *
+ * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ *
+ * For additional information about the PCG random number generation scheme,
+ * including its license and other licensing options, visit
+ *
+ * http://www.pcg-random.org
+ */
+
+/*
+ * This code is derived from the canonical C++ PCG implementation, which
+ * has many additional features and is preferable if you can use C++ in
+ * your project.
+ *
+ * Much of the derivation was performed mechanically. In particular, the
+ * output functions were generated by compiling the C++ output functions
+ * into LLVM bitcode and then transforming that using the LLVM C backend
+ * (from https://github.com/draperlaboratory/llvm-cbe), and then
+ * postprocessing and hand editing the output.
+ *
+ * Much of the remaining code was generated by C-preprocessor metaprogramming.
+ */
+
+#ifndef PCG_VARIANTS_H_INCLUDED
+#define PCG_VARIANTS_H_INCLUDED 1
+
+#include <inttypes.h>
+
+#if __SIZEOF_INT128__
+typedef __uint128_t pcg128_t;
+#define PCG_128BIT_CONSTANT(high,low) \
+((((pcg128_t)high) << 64) + low)
+#define PCG_HAS_128BIT_OPS 1
+#else
+#error "non"
+#endif
+
+#if __GNUC_GNU_INLINE__ && !defined(__cplusplus)
+#error Nonstandard GNU inlining semanatics. Compile with -std=c99 or better.
+// We could instead use macros PCG_INLINE and PCG_EXTERN_INLINE
+// but better to just reject ancient C code.
+#endif
+
+#if __cplusplus
+extern "C" {
+#endif
+
+ /*
+ * Rotate helper functions.
+ */
+
+ inline uint8_t pcg_rotr_8(uint8_t value, unsigned int rot)
+ {
+ /* Unfortunately, clang is kinda pathetic when it comes to properly
+ * recognizing idiomatic rotate code, so for clang we actually provide
+ * assembler directives (enabled with PCG_USE_INLINE_ASM). Boo, hiss.
+ */
+#if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__)
+ asm ("rorb %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
+ return value;
+#else
+ return (value >> rot) | (value << ((- rot) & 7));
+#endif
+ }
+
+ inline uint16_t pcg_rotr_16(uint16_t value, unsigned int rot)
+ {
+#if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__)
+ asm ("rorw %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
+ return value;
+#else
+ return (value >> rot) | (value << ((- rot) & 15));
+#endif
+ }
+
+ inline uint32_t pcg_rotr_32(uint32_t value, unsigned int rot)
+ {
+#if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__)
+ asm ("rorl %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
+ return value;
+#else
+ return (value >> rot) | (value << ((- rot) & 31));
+#endif
+ }
+
+ inline uint64_t pcg_rotr_64(uint64_t value, unsigned int rot)
+ {
+#if 0 && PCG_USE_INLINE_ASM && __clang__ && __x86_64__
+ // For whatever reason, clang actually *does* generator rotq by
+ // itself, so we don't need this code.
+ asm ("rorq %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
+ return value;
+#else
+ return (value >> rot) | (value << ((- rot) & 63));
+#endif
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t pcg_rotr_128(pcg128_t value, unsigned int rot)
+ {
+ return (value >> rot) | (value << ((- rot) & 127));
+ }
+#endif
+
+ /*
+ * Output functions. These are the core of the PCG generation scheme.
+ */
+
+ // XSH RS
+
+ inline uint8_t pcg_output_xsh_rs_16_8(uint16_t state)
+ {
+ return (uint8_t)(((state >> 7u) ^ state) >> ((state >> 14u) + 3u));
+ }
+
+ inline uint16_t pcg_output_xsh_rs_32_16(uint32_t state)
+ {
+ return (uint16_t)(((state >> 11u) ^ state) >> ((state >> 30u) + 11u));
+ }
+
+ inline uint32_t pcg_output_xsh_rs_64_32(uint64_t state)
+ {
+
+ return (uint32_t)(((state >> 22u) ^ state) >> ((state >> 61u) + 22u));
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_output_xsh_rs_128_64(pcg128_t state)
+ {
+ return (uint64_t)(((state >> 43u) ^ state) >> ((state >> 124u) + 45u));
+ }
+#endif
+
+ // XSH RR
+
+ inline uint8_t pcg_output_xsh_rr_16_8(uint16_t state)
+ {
+ return pcg_rotr_8(((state >> 5u) ^ state) >> 5u, state >> 13u);
+ }
+
+ inline uint16_t pcg_output_xsh_rr_32_16(uint32_t state)
+ {
+ return pcg_rotr_16(((state >> 10u) ^ state) >> 12u, state >> 28u);
+ }
+
+ inline uint32_t pcg_output_xsh_rr_64_32(uint64_t state)
+ {
+ return pcg_rotr_32(((state >> 18u) ^ state) >> 27u, state >> 59u);
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_output_xsh_rr_128_64(pcg128_t state)
+ {
+ return pcg_rotr_64(((state >> 29u) ^ state) >> 58u, state >> 122u);
+ }
+#endif
+
+ // RXS M XS
+
+ inline uint8_t pcg_output_rxs_m_xs_8_8(uint8_t state)
+ {
+ uint8_t word = ((state >> ((state >> 6u) + 2u)) ^ state) * 217u;
+ return (word >> 6u) ^ word;
+ }
+
+ inline uint16_t pcg_output_rxs_m_xs_16_16(uint16_t state)
+ {
+ uint16_t word = ((state >> ((state >> 13u) + 3u)) ^ state) * 62169u;
+ return (word >> 11u) ^ word;
+ }
+
+ inline uint32_t pcg_output_rxs_m_xs_32_32(uint32_t state)
+ {
+ uint32_t word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
+ return (word >> 22u) ^ word;
+ }
+
+ inline uint64_t pcg_output_rxs_m_xs_64_64(uint64_t state)
+ {
+ uint64_t word = ((state >> ((state >> 59u) + 5u)) ^ state)
+ * 12605985483714917081ull;
+ return (word >> 43u) ^ word;
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t pcg_output_rxs_m_xs_128_128(pcg128_t state)
+ {
+ pcg128_t word = ((state >> ((state >> 122u) + 6u)) ^ state)
+ * (PCG_128BIT_CONSTANT(17766728186571221404ULL,
+ 12605985483714917081ULL));
+ // 327738287884841127335028083622016905945
+ return (word >> 86u) ^ word;
+ }
+#endif
+
+ // XSL RR (only defined for >= 64 bits)
+
+ inline uint32_t pcg_output_xsl_rr_64_32(uint64_t state)
+ {
+ return pcg_rotr_32(((uint32_t)(state >> 32u)) ^ (uint32_t)state,
+ state >> 59u);
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_output_xsl_rr_128_64(pcg128_t state)
+ {
+ return pcg_rotr_64(((uint64_t)(state >> 64u)) ^ (uint64_t)state,
+ state >> 122u);
+ }
+#endif
+
+ // XSL RR RR (only defined for >= 64 bits)
+
+ inline uint64_t pcg_output_xsl_rr_rr_64_64(uint64_t state)
+ {
+ uint32_t rot1 = (uint32_t)(state >> 59u);
+ uint32_t high = (uint32_t)(state >> 32u);
+ uint32_t low = (uint32_t)state;
+ uint32_t xored = high ^ low;
+ uint32_t newlow = pcg_rotr_32(xored, rot1);
+ uint32_t newhigh = pcg_rotr_32(high, newlow & 31u);
+ return (((uint64_t)newhigh) << 32u) | newlow;
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t pcg_output_xsl_rr_rr_128_128(pcg128_t state)
+ {
+ uint32_t rot1 = (uint32_t)(state >> 122u);
+ uint64_t high = (uint64_t)(state >> 64u);
+ uint64_t low = (uint64_t)state;
+ uint64_t xored = high ^ low;
+ uint64_t newlow = pcg_rotr_64(xored, rot1);
+ uint64_t newhigh = pcg_rotr_64(high, newlow & 63u);
+ return (((pcg128_t)newhigh) << 64u) | newlow;
+ }
+#endif
+
+#define PCG_DEFAULT_MULTIPLIER_8 141U
+#define PCG_DEFAULT_MULTIPLIER_16 12829U
+#define PCG_DEFAULT_MULTIPLIER_32 747796405U
+#define PCG_DEFAULT_MULTIPLIER_64 6364136223846793005ULL
+
+#define PCG_DEFAULT_INCREMENT_8 77U
+#define PCG_DEFAULT_INCREMENT_16 47989U
+#define PCG_DEFAULT_INCREMENT_32 2891336453U
+#define PCG_DEFAULT_INCREMENT_64 1442695040888963407ULL
+
+#if PCG_HAS_128BIT_OPS
+#define PCG_DEFAULT_MULTIPLIER_128 \
+PCG_128BIT_CONSTANT(2549297995355413924ULL,4865540595714422341ULL)
+#define PCG_DEFAULT_INCREMENT_128 \
+PCG_128BIT_CONSTANT(6364136223846793005ULL,1442695040888963407ULL)
+#endif
+
+ /*
+ * Static initialization constants (if you can't call srandom for some
+ * bizarre reason).
+ */
+
+#if PCG_HAS_128BIT_OPS
+#define PCG_STATE_ONESEQ_8_INITIALIZER { 0xd7U }
+#define PCG_STATE_ONESEQ_16_INITIALIZER { 0x20dfU }
+#define PCG_STATE_ONESEQ_32_INITIALIZER { 0x46b56677U }
+#define PCG_STATE_ONESEQ_64_INITIALIZER { 0x4d595df4d0f33173ULL }
+#define PCG_STATE_ONESEQ_128_INITIALIZER \
+{ PCG_128BIT_CONSTANT(0xb8dc10e158a92392ULL, 0x98046df007ec0a53ULL) }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+#define PCG_STATE_UNIQUE_8_INITIALIZER PCG_STATE_ONESEQ_8_INITIALIZER
+#define PCG_STATE_UNIQUE_16_INITIALIZER PCG_STATE_ONESEQ_16_INITIALIZER
+#define PCG_STATE_UNIQUE_32_INITIALIZER PCG_STATE_ONESEQ_32_INITIALIZER
+#define PCG_STATE_UNIQUE_64_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER
+#define PCG_STATE_UNIQUE_128_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER
+#endif
+
+#if PCG_HAS_128BIT_OPS
+#define PCG_STATE_MCG_8_INITIALIZER { 0xe5U }
+#define PCG_STATE_MCG_16_INITIALIZER { 0xa5e5U }
+#define PCG_STATE_MCG_32_INITIALIZER { 0xd15ea5e5U }
+#define PCG_STATE_MCG_64_INITIALIZER { 0xcafef00dd15ea5e5ULL }
+#define PCG_STATE_MCG_128_INITIALIZER \
+{ PCG_128BIT_CONSTANT(0x0000000000000000ULL, 0xcafef00dd15ea5e5ULL) }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+#define PCG_STATE_SETSEQ_8_INITIALIZER { 0x9bU, 0xdbU }
+#define PCG_STATE_SETSEQ_16_INITIALIZER { 0xe39bU, 0x5bdbU }
+#define PCG_STATE_SETSEQ_32_INITIALIZER { 0xec02d89bU, 0x94b95bdbU }
+#define PCG_STATE_SETSEQ_64_INITIALIZER \
+{ 0x853c49e6748fea9bULL, 0xda3e39cb94b95bdbULL }
+#define PCG_STATE_SETSEQ_128_INITIALIZER \
+{ PCG_128BIT_CONSTANT(0x979c9a98d8462005ULL, 0x7d3e9cb6cfe0549bULL), \
+PCG_128BIT_CONSTANT(0x0000000000000001ULL, 0xda3e39cb94b95bdbULL) }
+#endif
+
+ /* Representations for the oneseq, mcg, and unique variants */
+
+ struct pcg_state_8 {
+ uint8_t state;
+ };
+
+ struct pcg_state_16 {
+ uint16_t state;
+ };
+
+ struct pcg_state_32 {
+ uint32_t state;
+ };
+
+ struct pcg_state_64 {
+ uint64_t state;
+ };
+
+#if PCG_HAS_128BIT_OPS
+ struct pcg_state_128 {
+ pcg128_t state;
+ };
+#endif
+
+ /* Representations setseq variants */
+
+ struct pcg_state_setseq_8 {
+ uint8_t state;
+ uint8_t inc;
+ };
+
+ struct pcg_state_setseq_16 {
+ uint16_t state;
+ uint16_t inc;
+ };
+
+ struct pcg_state_setseq_32 {
+ uint32_t state;
+ uint32_t inc;
+ };
+
+ struct pcg_state_setseq_64 {
+ uint64_t state;
+ uint64_t inc;
+ };
+
+#if PCG_HAS_128BIT_OPS
+ struct pcg_state_setseq_128 {
+ pcg128_t state;
+ pcg128_t inc;
+ };
+#endif
+
+ /* Multi-step advance functions (jump-ahead, jump-back) */
+
+ extern uint8_t pcg_advance_lcg_8(uint8_t state, uint8_t delta, uint8_t cur_mult,
+ uint8_t cur_plus);
+ extern uint16_t pcg_advance_lcg_16(uint16_t state, uint16_t delta,
+ uint16_t cur_mult, uint16_t cur_plus);
+ extern uint32_t pcg_advance_lcg_32(uint32_t state, uint32_t delta,
+ uint32_t cur_mult, uint32_t cur_plus);
+ extern uint64_t pcg_advance_lcg_64(uint64_t state, uint64_t delta,
+ uint64_t cur_mult, uint64_t cur_plus);
+
+#if PCG_HAS_128BIT_OPS
+ extern pcg128_t pcg_advance_lcg_128(pcg128_t state, pcg128_t delta,
+ pcg128_t cur_mult, pcg128_t cur_plus);
+#endif
+
+ /* Functions to advance the underlying LCG, one version for each size and
+ * each style. These functions are considered semi-private. There is rarely
+ * a good reason to call them directly.
+ */
+
+ inline void pcg_oneseq_8_step_r(struct pcg_state_8* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8
+ + PCG_DEFAULT_INCREMENT_8;
+ }
+
+ inline void pcg_oneseq_8_advance_r(struct pcg_state_8* rng, uint8_t delta)
+ {
+ rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8,
+ PCG_DEFAULT_INCREMENT_8);
+ }
+
+ inline void pcg_mcg_8_step_r(struct pcg_state_8* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8;
+ }
+
+ inline void pcg_mcg_8_advance_r(struct pcg_state_8* rng, uint8_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8, 0u);
+ }
+
+ inline void pcg_unique_8_step_r(struct pcg_state_8* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8
+ + (uint8_t)(((intptr_t)rng) | 1u);
+ }
+
+ inline void pcg_unique_8_advance_r(struct pcg_state_8* rng, uint8_t delta)
+ {
+ rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8,
+ (uint8_t)(((intptr_t)rng) | 1u));
+ }
+
+ inline void pcg_setseq_8_step_r(struct pcg_state_setseq_8* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8 + rng->inc;
+ }
+
+ inline void pcg_setseq_8_advance_r(struct pcg_state_setseq_8* rng,
+ uint8_t delta)
+ {
+ rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8,
+ rng->inc);
+ }
+
+ inline void pcg_oneseq_16_step_r(struct pcg_state_16* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16
+ + PCG_DEFAULT_INCREMENT_16;
+ }
+
+ inline void pcg_oneseq_16_advance_r(struct pcg_state_16* rng, uint16_t delta)
+ {
+ rng->state = pcg_advance_lcg_16(
+ rng->state, delta, PCG_DEFAULT_MULTIPLIER_16, PCG_DEFAULT_INCREMENT_16);
+ }
+
+ inline void pcg_mcg_16_step_r(struct pcg_state_16* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16;
+ }
+
+ inline void pcg_mcg_16_advance_r(struct pcg_state_16* rng, uint16_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_16(rng->state, delta, PCG_DEFAULT_MULTIPLIER_16, 0u);
+ }
+
+ inline void pcg_unique_16_step_r(struct pcg_state_16* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16
+ + (uint16_t)(((intptr_t)rng) | 1u);
+ }
+
+ inline void pcg_unique_16_advance_r(struct pcg_state_16* rng, uint16_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_16(rng->state, delta, PCG_DEFAULT_MULTIPLIER_16,
+ (uint16_t)(((intptr_t)rng) | 1u));
+ }
+
+ inline void pcg_setseq_16_step_r(struct pcg_state_setseq_16* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16 + rng->inc;
+ }
+
+ inline void pcg_setseq_16_advance_r(struct pcg_state_setseq_16* rng,
+ uint16_t delta)
+ {
+ rng->state = pcg_advance_lcg_16(rng->state, delta,
+ PCG_DEFAULT_MULTIPLIER_16, rng->inc);
+ }
+
+ inline void pcg_oneseq_32_step_r(struct pcg_state_32* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32
+ + PCG_DEFAULT_INCREMENT_32;
+ }
+
+ inline void pcg_oneseq_32_advance_r(struct pcg_state_32* rng, uint32_t delta)
+ {
+ rng->state = pcg_advance_lcg_32(
+ rng->state, delta, PCG_DEFAULT_MULTIPLIER_32, PCG_DEFAULT_INCREMENT_32);
+ }
+
+ inline void pcg_mcg_32_step_r(struct pcg_state_32* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32;
+ }
+
+ inline void pcg_mcg_32_advance_r(struct pcg_state_32* rng, uint32_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_32(rng->state, delta, PCG_DEFAULT_MULTIPLIER_32, 0u);
+ }
+
+ inline void pcg_unique_32_step_r(struct pcg_state_32* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32
+ + (uint32_t)(((intptr_t)rng) | 1u);
+ }
+
+ inline void pcg_unique_32_advance_r(struct pcg_state_32* rng, uint32_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_32(rng->state, delta, PCG_DEFAULT_MULTIPLIER_32,
+ (uint32_t)(((intptr_t)rng) | 1u));
+ }
+
+ inline void pcg_setseq_32_step_r(struct pcg_state_setseq_32* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32 + rng->inc;
+ }
+
+ inline void pcg_setseq_32_advance_r(struct pcg_state_setseq_32* rng,
+ uint32_t delta)
+ {
+ rng->state = pcg_advance_lcg_32(rng->state, delta,
+ PCG_DEFAULT_MULTIPLIER_32, rng->inc);
+ }
+
+ inline void pcg_oneseq_64_step_r(struct pcg_state_64* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64
+ + PCG_DEFAULT_INCREMENT_64;
+ }
+
+ inline void pcg_oneseq_64_advance_r(struct pcg_state_64* rng, uint64_t delta)
+ {
+ rng->state = pcg_advance_lcg_64(
+ rng->state, delta, PCG_DEFAULT_MULTIPLIER_64, PCG_DEFAULT_INCREMENT_64);
+ }
+
+ inline void pcg_mcg_64_step_r(struct pcg_state_64* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64;
+ }
+
+ inline void pcg_mcg_64_advance_r(struct pcg_state_64* rng, uint64_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_64(rng->state, delta, PCG_DEFAULT_MULTIPLIER_64, 0u);
+ }
+
+ inline void pcg_unique_64_step_r(struct pcg_state_64* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64
+ + (uint64_t)(((intptr_t)rng) | 1u);
+ }
+
+ inline void pcg_unique_64_advance_r(struct pcg_state_64* rng, uint64_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_64(rng->state, delta, PCG_DEFAULT_MULTIPLIER_64,
+ (uint64_t)(((intptr_t)rng) | 1u));
+ }
+
+ inline void pcg_setseq_64_step_r(struct pcg_state_setseq_64* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64 + rng->inc;
+ }
+
+ inline void pcg_setseq_64_advance_r(struct pcg_state_setseq_64* rng,
+ uint64_t delta)
+ {
+ rng->state = pcg_advance_lcg_64(rng->state, delta,
+ PCG_DEFAULT_MULTIPLIER_64, rng->inc);
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_oneseq_128_step_r(struct pcg_state_128* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128
+ + PCG_DEFAULT_INCREMENT_128;
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_oneseq_128_advance_r(struct pcg_state_128* rng, pcg128_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_128(rng->state, delta, PCG_DEFAULT_MULTIPLIER_128,
+ PCG_DEFAULT_INCREMENT_128);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_mcg_128_step_r(struct pcg_state_128* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128;
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_mcg_128_advance_r(struct pcg_state_128* rng, pcg128_t delta)
+ {
+ rng->state = pcg_advance_lcg_128(rng->state, delta,
+ PCG_DEFAULT_MULTIPLIER_128, 0u);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_unique_128_step_r(struct pcg_state_128* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128
+ + (pcg128_t)(((intptr_t)rng) | 1u);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_unique_128_advance_r(struct pcg_state_128* rng, pcg128_t delta)
+ {
+ rng->state
+ = pcg_advance_lcg_128(rng->state, delta, PCG_DEFAULT_MULTIPLIER_128,
+ (pcg128_t)(((intptr_t)rng) | 1u));
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_setseq_128_step_r(struct pcg_state_setseq_128* rng)
+ {
+ rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128 + rng->inc;
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_setseq_128_advance_r(struct pcg_state_setseq_128* rng,
+ pcg128_t delta)
+ {
+ rng->state = pcg_advance_lcg_128(rng->state, delta,
+ PCG_DEFAULT_MULTIPLIER_128, rng->inc);
+ }
+#endif
+
+ /* Functions to seed the RNG state, one version for each size and each
+ * style. Unlike the step functions, regular users can and should call
+ * these functions.
+ */
+
+ inline void pcg_oneseq_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate)
+ {
+ rng->state = 0U;
+ pcg_oneseq_8_step_r(rng);
+ rng->state += initstate;
+ pcg_oneseq_8_step_r(rng);
+ }
+
+ inline void pcg_mcg_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate)
+ {
+ rng->state = initstate | 1u;
+ }
+
+ inline void pcg_unique_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate)
+ {
+ rng->state = 0U;
+ pcg_unique_8_step_r(rng);
+ rng->state += initstate;
+ pcg_unique_8_step_r(rng);
+ }
+
+ inline void pcg_setseq_8_srandom_r(struct pcg_state_setseq_8* rng,
+ uint8_t initstate, uint8_t initseq)
+ {
+ rng->state = 0U;
+ rng->inc = (initseq << 1u) | 1u;
+ pcg_setseq_8_step_r(rng);
+ rng->state += initstate;
+ pcg_setseq_8_step_r(rng);
+ }
+
+ inline void pcg_oneseq_16_srandom_r(struct pcg_state_16* rng,
+ uint16_t initstate)
+ {
+ rng->state = 0U;
+ pcg_oneseq_16_step_r(rng);
+ rng->state += initstate;
+ pcg_oneseq_16_step_r(rng);
+ }
+
+ inline void pcg_mcg_16_srandom_r(struct pcg_state_16* rng, uint16_t initstate)
+ {
+ rng->state = initstate | 1u;
+ }
+
+ inline void pcg_unique_16_srandom_r(struct pcg_state_16* rng,
+ uint16_t initstate)
+ {
+ rng->state = 0U;
+ pcg_unique_16_step_r(rng);
+ rng->state += initstate;
+ pcg_unique_16_step_r(rng);
+ }
+
+ inline void pcg_setseq_16_srandom_r(struct pcg_state_setseq_16* rng,
+ uint16_t initstate, uint16_t initseq)
+ {
+ rng->state = 0U;
+ rng->inc = (initseq << 1u) | 1u;
+ pcg_setseq_16_step_r(rng);
+ rng->state += initstate;
+ pcg_setseq_16_step_r(rng);
+ }
+
+ inline void pcg_oneseq_32_srandom_r(struct pcg_state_32* rng,
+ uint32_t initstate)
+ {
+ rng->state = 0U;
+ pcg_oneseq_32_step_r(rng);
+ rng->state += initstate;
+ pcg_oneseq_32_step_r(rng);
+ }
+
+ inline void pcg_mcg_32_srandom_r(struct pcg_state_32* rng, uint32_t initstate)
+ {
+ rng->state = initstate | 1u;
+ }
+
+ inline void pcg_unique_32_srandom_r(struct pcg_state_32* rng,
+ uint32_t initstate)
+ {
+ rng->state = 0U;
+ pcg_unique_32_step_r(rng);
+ rng->state += initstate;
+ pcg_unique_32_step_r(rng);
+ }
+
+ inline void pcg_setseq_32_srandom_r(struct pcg_state_setseq_32* rng,
+ uint32_t initstate, uint32_t initseq)
+ {
+ rng->state = 0U;
+ rng->inc = (initseq << 1u) | 1u;
+ pcg_setseq_32_step_r(rng);
+ rng->state += initstate;
+ pcg_setseq_32_step_r(rng);
+ }
+
+ inline void pcg_oneseq_64_srandom_r(struct pcg_state_64* rng,
+ uint64_t initstate)
+ {
+ rng->state = 0U;
+ pcg_oneseq_64_step_r(rng);
+ rng->state += initstate;
+ pcg_oneseq_64_step_r(rng);
+ }
+
+ inline void pcg_mcg_64_srandom_r(struct pcg_state_64* rng, uint64_t initstate)
+ {
+ rng->state = initstate | 1u;
+ }
+
+ inline void pcg_unique_64_srandom_r(struct pcg_state_64* rng,
+ uint64_t initstate)
+ {
+ rng->state = 0U;
+ pcg_unique_64_step_r(rng);
+ rng->state += initstate;
+ pcg_unique_64_step_r(rng);
+ }
+
+ inline void pcg_setseq_64_srandom_r(struct pcg_state_setseq_64* rng,
+ uint64_t initstate, uint64_t initseq)
+ {
+ rng->state = 0U;
+ rng->inc = (initseq << 1u) | 1u;
+ pcg_setseq_64_step_r(rng);
+ rng->state += initstate;
+ pcg_setseq_64_step_r(rng);
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_oneseq_128_srandom_r(struct pcg_state_128* rng,
+ pcg128_t initstate)
+ {
+ rng->state = 0U;
+ pcg_oneseq_128_step_r(rng);
+ rng->state += initstate;
+ pcg_oneseq_128_step_r(rng);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_mcg_128_srandom_r(struct pcg_state_128* rng, pcg128_t initstate)
+ {
+ rng->state = initstate | 1u;
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_unique_128_srandom_r(struct pcg_state_128* rng,
+ pcg128_t initstate)
+ {
+ rng->state = 0U;
+ pcg_unique_128_step_r(rng);
+ rng->state += initstate;
+ pcg_unique_128_step_r(rng);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline void pcg_setseq_128_srandom_r(struct pcg_state_setseq_128* rng,
+ pcg128_t initstate, pcg128_t initseq)
+ {
+ rng->state = 0U;
+ rng->inc = (initseq << 1u) | 1u;
+ pcg_setseq_128_step_r(rng);
+ rng->state += initstate;
+ pcg_setseq_128_step_r(rng);
+ }
+#endif
+
+ /* Now, finally we create each of the individual generators. We provide
+ * a random_r function that provides a random number of the appropriate
+ * type (using the full range of the type) and a boundedrand_r version
+ * that provides
+ *
+ * Implementation notes for boundedrand_r:
+ *
+ * To avoid bias, we need to make the range of the RNG a multiple of
+ * bound, which we do by dropping output less than a threshold.
+ * Let's consider a 32-bit case... A naive scheme to calculate the
+ * threshold would be to do
+ *
+ * uint32_t threshold = 0x100000000ull % bound;
+ *
+ * but 64-bit div/mod is slower than 32-bit div/mod (especially on
+ * 32-bit platforms). In essence, we do
+ *
+ * uint32_t threshold = (0x100000000ull-bound) % bound;
+ *
+ * because this version will calculate the same modulus, but the LHS
+ * value is less than 2^32.
+ *
+ * (Note that using modulo is only wise for good RNGs, poorer RNGs
+ * such as raw LCGs do better using a technique based on division.)
+ * Empricical tests show that division is preferable to modulus for
+ * reducting the range of an RNG. It's faster, and sometimes it can
+ * even be statistically prefereable.
+ */
+
+ /* Generation functions for XSH RS */
+
+ inline uint8_t pcg_oneseq_16_xsh_rs_8_random_r(struct pcg_state_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_oneseq_16_step_r(rng);
+ return pcg_output_xsh_rs_16_8(oldstate);
+ }
+
+ inline uint8_t pcg_oneseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_oneseq_16_xsh_rs_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t pcg_oneseq_32_xsh_rs_16_random_r(struct pcg_state_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_oneseq_32_step_r(rng);
+ return pcg_output_xsh_rs_32_16(oldstate);
+ }
+
+ inline uint16_t pcg_oneseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_oneseq_32_xsh_rs_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t pcg_oneseq_64_xsh_rs_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_oneseq_64_step_r(rng);
+ return pcg_output_xsh_rs_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_oneseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_oneseq_64_xsh_rs_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_oneseq_128_xsh_rs_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_oneseq_128_step_r(rng);
+ return pcg_output_xsh_rs_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_oneseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_oneseq_128_xsh_rs_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint8_t pcg_unique_16_xsh_rs_8_random_r(struct pcg_state_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_unique_16_step_r(rng);
+ return pcg_output_xsh_rs_16_8(oldstate);
+ }
+
+ inline uint8_t pcg_unique_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_unique_16_xsh_rs_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t pcg_unique_32_xsh_rs_16_random_r(struct pcg_state_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_unique_32_step_r(rng);
+ return pcg_output_xsh_rs_32_16(oldstate);
+ }
+
+ inline uint16_t pcg_unique_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_unique_32_xsh_rs_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t pcg_unique_64_xsh_rs_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_unique_64_step_r(rng);
+ return pcg_output_xsh_rs_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_unique_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_unique_64_xsh_rs_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_unique_128_xsh_rs_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_unique_128_step_r(rng);
+ return pcg_output_xsh_rs_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_unique_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_unique_128_xsh_rs_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint8_t pcg_setseq_16_xsh_rs_8_random_r(struct pcg_state_setseq_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_setseq_16_step_r(rng);
+ return pcg_output_xsh_rs_16_8(oldstate);
+ }
+
+ inline uint8_t
+ pcg_setseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_setseq_16* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_setseq_16_xsh_rs_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t
+ pcg_setseq_32_xsh_rs_16_random_r(struct pcg_state_setseq_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_setseq_32_step_r(rng);
+ return pcg_output_xsh_rs_32_16(oldstate);
+ }
+
+ inline uint16_t
+ pcg_setseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_setseq_32* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_setseq_32_xsh_rs_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t
+ pcg_setseq_64_xsh_rs_32_random_r(struct pcg_state_setseq_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_setseq_64_step_r(rng);
+ return pcg_output_xsh_rs_64_32(oldstate);
+ }
+
+ inline uint32_t
+ pcg_setseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_setseq_64_xsh_rs_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_setseq_128_xsh_rs_64_random_r(struct pcg_state_setseq_128* rng)
+ {
+ pcg_setseq_128_step_r(rng);
+ return pcg_output_xsh_rs_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_setseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_setseq_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_setseq_128_xsh_rs_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint8_t pcg_mcg_16_xsh_rs_8_random_r(struct pcg_state_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_mcg_16_step_r(rng);
+ return pcg_output_xsh_rs_16_8(oldstate);
+ }
+
+ inline uint8_t pcg_mcg_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_mcg_16_xsh_rs_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t pcg_mcg_32_xsh_rs_16_random_r(struct pcg_state_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_mcg_32_step_r(rng);
+ return pcg_output_xsh_rs_32_16(oldstate);
+ }
+
+ inline uint16_t pcg_mcg_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_mcg_32_xsh_rs_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t pcg_mcg_64_xsh_rs_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_mcg_64_step_r(rng);
+ return pcg_output_xsh_rs_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_mcg_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_mcg_64_xsh_rs_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_mcg_128_xsh_rs_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_mcg_128_step_r(rng);
+ return pcg_output_xsh_rs_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_mcg_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_mcg_128_xsh_rs_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ /* Generation functions for XSH RR */
+
+ inline uint8_t pcg_oneseq_16_xsh_rr_8_random_r(struct pcg_state_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_oneseq_16_step_r(rng);
+ return pcg_output_xsh_rr_16_8(oldstate);
+ }
+
+ inline uint8_t pcg_oneseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_oneseq_16_xsh_rr_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t pcg_oneseq_32_xsh_rr_16_random_r(struct pcg_state_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_oneseq_32_step_r(rng);
+ return pcg_output_xsh_rr_32_16(oldstate);
+ }
+
+ inline uint16_t pcg_oneseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_oneseq_32_xsh_rr_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t pcg_oneseq_64_xsh_rr_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_oneseq_64_step_r(rng);
+ return pcg_output_xsh_rr_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_oneseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_oneseq_64_xsh_rr_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_oneseq_128_xsh_rr_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_oneseq_128_step_r(rng);
+ return pcg_output_xsh_rr_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_oneseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_oneseq_128_xsh_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint8_t pcg_unique_16_xsh_rr_8_random_r(struct pcg_state_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_unique_16_step_r(rng);
+ return pcg_output_xsh_rr_16_8(oldstate);
+ }
+
+ inline uint8_t pcg_unique_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_unique_16_xsh_rr_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t pcg_unique_32_xsh_rr_16_random_r(struct pcg_state_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_unique_32_step_r(rng);
+ return pcg_output_xsh_rr_32_16(oldstate);
+ }
+
+ inline uint16_t pcg_unique_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_unique_32_xsh_rr_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t pcg_unique_64_xsh_rr_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_unique_64_step_r(rng);
+ return pcg_output_xsh_rr_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_unique_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_unique_64_xsh_rr_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_unique_128_xsh_rr_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_unique_128_step_r(rng);
+ return pcg_output_xsh_rr_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_unique_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_unique_128_xsh_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint8_t pcg_setseq_16_xsh_rr_8_random_r(struct pcg_state_setseq_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_setseq_16_step_r(rng);
+ return pcg_output_xsh_rr_16_8(oldstate);
+ }
+
+ inline uint8_t
+ pcg_setseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_setseq_16* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_setseq_16_xsh_rr_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t
+ pcg_setseq_32_xsh_rr_16_random_r(struct pcg_state_setseq_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_setseq_32_step_r(rng);
+ return pcg_output_xsh_rr_32_16(oldstate);
+ }
+
+ inline uint16_t
+ pcg_setseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_setseq_32* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_setseq_32_xsh_rr_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t
+ pcg_setseq_64_xsh_rr_32_random_r(struct pcg_state_setseq_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_setseq_64_step_r(rng);
+ return pcg_output_xsh_rr_64_32(oldstate);
+ }
+
+ inline uint32_t
+ pcg_setseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_setseq_64_xsh_rr_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_setseq_128_xsh_rr_64_random_r(struct pcg_state_setseq_128* rng)
+ {
+ pcg_setseq_128_step_r(rng);
+ return pcg_output_xsh_rr_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_setseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_setseq_128_xsh_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint8_t pcg_mcg_16_xsh_rr_8_random_r(struct pcg_state_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_mcg_16_step_r(rng);
+ return pcg_output_xsh_rr_16_8(oldstate);
+ }
+
+ inline uint8_t pcg_mcg_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_mcg_16_xsh_rr_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t pcg_mcg_32_xsh_rr_16_random_r(struct pcg_state_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_mcg_32_step_r(rng);
+ return pcg_output_xsh_rr_32_16(oldstate);
+ }
+
+ inline uint16_t pcg_mcg_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_mcg_32_xsh_rr_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t pcg_mcg_64_xsh_rr_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_mcg_64_step_r(rng);
+ return pcg_output_xsh_rr_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_mcg_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_mcg_64_xsh_rr_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_mcg_128_xsh_rr_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_mcg_128_step_r(rng);
+ return pcg_output_xsh_rr_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_mcg_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_mcg_128_xsh_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ /* Generation functions for RXS M XS (no MCG versions because they
+ * don't make sense when you want to use the entire state)
+ */
+
+ inline uint8_t pcg_oneseq_8_rxs_m_xs_8_random_r(struct pcg_state_8* rng)
+ {
+ uint8_t oldstate = rng->state;
+ pcg_oneseq_8_step_r(rng);
+ return pcg_output_rxs_m_xs_8_8(oldstate);
+ }
+
+ inline uint8_t pcg_oneseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_8* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_oneseq_8_rxs_m_xs_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t pcg_oneseq_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_oneseq_16_step_r(rng);
+ return pcg_output_rxs_m_xs_16_16(oldstate);
+ }
+
+ inline uint16_t
+ pcg_oneseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_oneseq_16_rxs_m_xs_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t pcg_oneseq_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_oneseq_32_step_r(rng);
+ return pcg_output_rxs_m_xs_32_32(oldstate);
+ }
+
+ inline uint32_t
+ pcg_oneseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_oneseq_32_rxs_m_xs_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint64_t pcg_oneseq_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_oneseq_64_step_r(rng);
+ return pcg_output_rxs_m_xs_64_64(oldstate);
+ }
+
+ inline uint64_t
+ pcg_oneseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_oneseq_64_rxs_m_xs_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t pcg_oneseq_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng)
+ {
+ pcg_oneseq_128_step_r(rng);
+ return pcg_output_rxs_m_xs_128_128(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t
+ pcg_oneseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng,
+ pcg128_t bound)
+ {
+ pcg128_t threshold = -bound % bound;
+ for (;;) {
+ pcg128_t r = pcg_oneseq_128_rxs_m_xs_128_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint16_t pcg_unique_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_unique_16_step_r(rng);
+ return pcg_output_rxs_m_xs_16_16(oldstate);
+ }
+
+ inline uint16_t
+ pcg_unique_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_unique_16_rxs_m_xs_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t pcg_unique_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_unique_32_step_r(rng);
+ return pcg_output_rxs_m_xs_32_32(oldstate);
+ }
+
+ inline uint32_t
+ pcg_unique_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_unique_32_rxs_m_xs_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint64_t pcg_unique_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_unique_64_step_r(rng);
+ return pcg_output_rxs_m_xs_64_64(oldstate);
+ }
+
+ inline uint64_t
+ pcg_unique_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_unique_64_rxs_m_xs_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t pcg_unique_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng)
+ {
+ pcg_unique_128_step_r(rng);
+ return pcg_output_rxs_m_xs_128_128(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t
+ pcg_unique_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng,
+ pcg128_t bound)
+ {
+ pcg128_t threshold = -bound % bound;
+ for (;;) {
+ pcg128_t r = pcg_unique_128_rxs_m_xs_128_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint8_t pcg_setseq_8_rxs_m_xs_8_random_r(struct pcg_state_setseq_8* rng)
+ {
+ uint8_t oldstate = rng->state;
+ pcg_setseq_8_step_r(rng);
+ return pcg_output_rxs_m_xs_8_8(oldstate);
+ }
+
+ inline uint8_t
+ pcg_setseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_setseq_8* rng,
+ uint8_t bound)
+ {
+ uint8_t threshold = ((uint8_t)(-bound)) % bound;
+ for (;;) {
+ uint8_t r = pcg_setseq_8_rxs_m_xs_8_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint16_t
+ pcg_setseq_16_rxs_m_xs_16_random_r(struct pcg_state_setseq_16* rng)
+ {
+ uint16_t oldstate = rng->state;
+ pcg_setseq_16_step_r(rng);
+ return pcg_output_rxs_m_xs_16_16(oldstate);
+ }
+
+ inline uint16_t
+ pcg_setseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_setseq_16* rng,
+ uint16_t bound)
+ {
+ uint16_t threshold = ((uint16_t)(-bound)) % bound;
+ for (;;) {
+ uint16_t r = pcg_setseq_16_rxs_m_xs_16_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint32_t
+ pcg_setseq_32_rxs_m_xs_32_random_r(struct pcg_state_setseq_32* rng)
+ {
+ uint32_t oldstate = rng->state;
+ pcg_setseq_32_step_r(rng);
+ return pcg_output_rxs_m_xs_32_32(oldstate);
+ }
+
+ inline uint32_t
+ pcg_setseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_setseq_32* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_setseq_32_rxs_m_xs_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+ inline uint64_t
+ pcg_setseq_64_rxs_m_xs_64_random_r(struct pcg_state_setseq_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_setseq_64_step_r(rng);
+ return pcg_output_rxs_m_xs_64_64(oldstate);
+ }
+
+ inline uint64_t
+ pcg_setseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_setseq_64_rxs_m_xs_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t
+ pcg_setseq_128_rxs_m_xs_128_random_r(struct pcg_state_setseq_128* rng)
+ {
+ pcg_setseq_128_step_r(rng);
+ return pcg_output_rxs_m_xs_128_128(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t
+ pcg_setseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_setseq_128* rng,
+ pcg128_t bound)
+ {
+ pcg128_t threshold = -bound % bound;
+ for (;;) {
+ pcg128_t r = pcg_setseq_128_rxs_m_xs_128_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ /* Generation functions for XSL RR (only defined for "large" types) */
+
+ inline uint32_t pcg_oneseq_64_xsl_rr_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_oneseq_64_step_r(rng);
+ return pcg_output_xsl_rr_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_oneseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_oneseq_64_xsl_rr_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_oneseq_128_xsl_rr_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_oneseq_128_step_r(rng);
+ return pcg_output_xsl_rr_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_oneseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_oneseq_128_xsl_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint32_t pcg_unique_64_xsl_rr_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_unique_64_step_r(rng);
+ return pcg_output_xsl_rr_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_unique_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_unique_64_xsl_rr_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_unique_128_xsl_rr_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_unique_128_step_r(rng);
+ return pcg_output_xsl_rr_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_unique_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_unique_128_xsl_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint32_t
+ pcg_setseq_64_xsl_rr_32_random_r(struct pcg_state_setseq_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_setseq_64_step_r(rng);
+ return pcg_output_xsl_rr_64_32(oldstate);
+ }
+
+ inline uint32_t
+ pcg_setseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_setseq_64_xsl_rr_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_setseq_128_xsl_rr_64_random_r(struct pcg_state_setseq_128* rng)
+ {
+ pcg_setseq_128_step_r(rng);
+ return pcg_output_xsl_rr_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t
+ pcg_setseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_setseq_128_xsl_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint32_t pcg_mcg_64_xsl_rr_32_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_mcg_64_step_r(rng);
+ return pcg_output_xsl_rr_64_32(oldstate);
+ }
+
+ inline uint32_t pcg_mcg_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng,
+ uint32_t bound)
+ {
+ uint32_t threshold = -bound % bound;
+ for (;;) {
+ uint32_t r = pcg_mcg_64_xsl_rr_32_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_mcg_128_xsl_rr_64_random_r(struct pcg_state_128* rng)
+ {
+ pcg_mcg_128_step_r(rng);
+ return pcg_output_xsl_rr_128_64(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline uint64_t pcg_mcg_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_mcg_128_xsl_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ /* Generation functions for XSL RR RR (only defined for "large" types) */
+
+ inline uint64_t pcg_oneseq_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_oneseq_64_step_r(rng);
+ return pcg_output_xsl_rr_rr_64_64(oldstate);
+ }
+
+ inline uint64_t
+ pcg_oneseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_oneseq_64_xsl_rr_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t pcg_oneseq_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng)
+ {
+ pcg_oneseq_128_step_r(rng);
+ return pcg_output_xsl_rr_rr_128_128(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t
+ pcg_oneseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng,
+ pcg128_t bound)
+ {
+ pcg128_t threshold = -bound % bound;
+ for (;;) {
+ pcg128_t r = pcg_oneseq_128_xsl_rr_rr_128_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint64_t pcg_unique_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_unique_64_step_r(rng);
+ return pcg_output_xsl_rr_rr_64_64(oldstate);
+ }
+
+ inline uint64_t
+ pcg_unique_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_unique_64_xsl_rr_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t pcg_unique_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng)
+ {
+ pcg_unique_128_step_r(rng);
+ return pcg_output_xsl_rr_rr_128_128(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t
+ pcg_unique_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng,
+ pcg128_t bound)
+ {
+ pcg128_t threshold = -bound % bound;
+ for (;;) {
+ pcg128_t r = pcg_unique_128_xsl_rr_rr_128_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ inline uint64_t
+ pcg_setseq_64_xsl_rr_rr_64_random_r(struct pcg_state_setseq_64* rng)
+ {
+ uint64_t oldstate = rng->state;
+ pcg_setseq_64_step_r(rng);
+ return pcg_output_xsl_rr_rr_64_64(oldstate);
+ }
+
+ inline uint64_t
+ pcg_setseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_setseq_64* rng,
+ uint64_t bound)
+ {
+ uint64_t threshold = -bound % bound;
+ for (;;) {
+ uint64_t r = pcg_setseq_64_xsl_rr_rr_64_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t
+ pcg_setseq_128_xsl_rr_rr_128_random_r(struct pcg_state_setseq_128* rng)
+ {
+ pcg_setseq_128_step_r(rng);
+ return pcg_output_xsl_rr_rr_128_128(rng->state);
+ }
+#endif
+
+#if PCG_HAS_128BIT_OPS
+ inline pcg128_t
+ pcg_setseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_setseq_128* rng,
+ pcg128_t bound)
+ {
+ pcg128_t threshold = -bound % bound;
+ for (;;) {
+ pcg128_t r = pcg_setseq_128_xsl_rr_rr_128_random_r(rng);
+ if (r >= threshold)
+ return r % bound;
+ }
+ }
+#endif
+
+ //// Typedefs
+ typedef struct pcg_state_setseq_64 pcg32_random_t;
+ typedef struct pcg_state_64 pcg32s_random_t;
+ typedef struct pcg_state_64 pcg32u_random_t;
+ typedef struct pcg_state_64 pcg32f_random_t;
+ //// random_r
+#define pcg32_random_r pcg_setseq_64_xsh_rr_32_random_r
+#define pcg32s_random_r pcg_oneseq_64_xsh_rr_32_random_r
+#define pcg32u_random_r pcg_unique_64_xsh_rr_32_random_r
+#define pcg32f_random_r pcg_mcg_64_xsh_rs_32_random_r
+ //// boundedrand_r
+#define pcg32_boundedrand_r pcg_setseq_64_xsh_rr_32_boundedrand_r
+#define pcg32s_boundedrand_r pcg_oneseq_64_xsh_rr_32_boundedrand_r
+#define pcg32u_boundedrand_r pcg_unique_64_xsh_rr_32_boundedrand_r
+#define pcg32f_boundedrand_r pcg_mcg_64_xsh_rs_32_boundedrand_r
+ //// srandom_r
+#define pcg32_srandom_r pcg_setseq_64_srandom_r
+#define pcg32s_srandom_r pcg_oneseq_64_srandom_r
+#define pcg32u_srandom_r pcg_unique_64_srandom_r
+#define pcg32f_srandom_r pcg_mcg_64_srandom_r
+ //// advance_r
+#define pcg32_advance_r pcg_setseq_64_advance_r
+#define pcg32s_advance_r pcg_oneseq_64_advance_r
+#define pcg32u_advance_r pcg_unique_64_advance_r
+#define pcg32f_advance_r pcg_mcg_64_advance_r
+
+#if PCG_HAS_128BIT_OPS
+ //// Typedefs
+ typedef struct pcg_state_setseq_128 pcg64_random_t;
+ typedef struct pcg_state_128 pcg64s_random_t;
+ typedef struct pcg_state_128 pcg64u_random_t;
+ typedef struct pcg_state_128 pcg64f_random_t;
+ //// random_r
+#define pcg64_random_r pcg_setseq_128_xsl_rr_64_random_r
+#define pcg64s_random_r pcg_oneseq_128_xsl_rr_64_random_r
+#define pcg64u_random_r pcg_unique_128_xsl_rr_64_random_r
+#define pcg64f_random_r pcg_mcg_128_xsl_rr_64_random_r
+ //// boundedrand_r
+#define pcg64_boundedrand_r pcg_setseq_128_xsl_rr_64_boundedrand_r
+#define pcg64s_boundedrand_r pcg_oneseq_128_xsl_rr_64_boundedrand_r
+#define pcg64u_boundedrand_r pcg_unique_128_xsl_rr_64_boundedrand_r
+#define pcg64f_boundedrand_r pcg_mcg_128_xsl_rr_64_boundedrand_r
+ //// srandom_r
+#define pcg64_srandom_r pcg_setseq_128_srandom_r
+#define pcg64s_srandom_r pcg_oneseq_128_srandom_r
+#define pcg64u_srandom_r pcg_unique_128_srandom_r
+#define pcg64f_srandom_r pcg_mcg_128_srandom_r
+ //// advance_r
+#define pcg64_advance_r pcg_setseq_128_advance_r
+#define pcg64s_advance_r pcg_oneseq_128_advance_r
+#define pcg64u_advance_r pcg_unique_128_advance_r
+#define pcg64f_advance_r pcg_mcg_128_advance_r
+#endif
+
+ //// Typedefs
+ typedef struct pcg_state_8 pcg8si_random_t;
+ typedef struct pcg_state_16 pcg16si_random_t;
+ typedef struct pcg_state_32 pcg32si_random_t;
+ typedef struct pcg_state_64 pcg64si_random_t;
+ //// random_r
+#define pcg8si_random_r pcg_oneseq_8_rxs_m_xs_8_random_r
+#define pcg16si_random_r pcg_oneseq_16_rxs_m_xs_16_random_r
+#define pcg32si_random_r pcg_oneseq_32_rxs_m_xs_32_random_r
+#define pcg64si_random_r pcg_oneseq_64_rxs_m_xs_64_random_r
+ //// boundedrand_r
+#define pcg8si_boundedrand_r pcg_oneseq_8_rxs_m_xs_8_boundedrand_r
+#define pcg16si_boundedrand_r pcg_oneseq_16_rxs_m_xs_16_boundedrand_r
+#define pcg32si_boundedrand_r pcg_oneseq_32_rxs_m_xs_32_boundedrand_r
+#define pcg64si_boundedrand_r pcg_oneseq_64_rxs_m_xs_64_boundedrand_r
+ //// srandom_r
+#define pcg8si_srandom_r pcg_oneseq_8_srandom_r
+#define pcg16si_srandom_r pcg_oneseq_16_srandom_r
+#define pcg32si_srandom_r pcg_oneseq_32_srandom_r
+#define pcg64si_srandom_r pcg_oneseq_64_srandom_r
+ //// advance_r
+#define pcg8si_advance_r pcg_oneseq_8_advance_r
+#define pcg16si_advance_r pcg_oneseq_16_advance_r
+#define pcg32si_advance_r pcg_oneseq_32_advance_r
+#define pcg64si_advance_r pcg_oneseq_64_advance_r
+
+#if PCG_HAS_128BIT_OPS
+ typedef struct pcg_state_128 pcg128si_random_t;
+#define pcg128si_random_r pcg_oneseq_128_rxs_m_xs_128_random_r
+#define pcg128si_boundedrand_r pcg_oneseq_128_rxs_m_xs_128_boundedrand_r
+#define pcg128si_srandom_r pcg_oneseq_128_srandom_r
+#define pcg128si_advance_r pcg_oneseq_128_advance_r
+#endif
+
+ //// Typedefs
+ typedef struct pcg_state_setseq_8 pcg8i_random_t;
+ typedef struct pcg_state_setseq_16 pcg16i_random_t;
+ typedef struct pcg_state_setseq_32 pcg32i_random_t;
+ typedef struct pcg_state_setseq_64 pcg64i_random_t;
+ //// random_r
+#define pcg8i_random_r pcg_setseq_8_rxs_m_xs_8_random_r
+#define pcg16i_random_r pcg_setseq_16_rxs_m_xs_16_random_r
+#define pcg32i_random_r pcg_setseq_32_rxs_m_xs_32_random_r
+#define pcg64i_random_r pcg_setseq_64_rxs_m_xs_64_random_r
+ //// boundedrand_r
+#define pcg8i_boundedrand_r pcg_setseq_8_rxs_m_xs_8_boundedrand_r
+#define pcg16i_boundedrand_r pcg_setseq_16_rxs_m_xs_16_boundedrand_r
+#define pcg32i_boundedrand_r pcg_setseq_32_rxs_m_xs_32_boundedrand_r
+#define pcg64i_boundedrand_r pcg_setseq_64_rxs_m_xs_64_boundedrand_r
+ //// srandom_r
+#define pcg8i_srandom_r pcg_setseq_8_srandom_r
+#define pcg16i_srandom_r pcg_setseq_16_srandom_r
+#define pcg32i_srandom_r pcg_setseq_32_srandom_r
+#define pcg64i_srandom_r pcg_setseq_64_srandom_r
+ //// advance_r
+#define pcg8i_advance_r pcg_setseq_8_advance_r
+#define pcg16i_advance_r pcg_setseq_16_advance_r
+#define pcg32i_advance_r pcg_setseq_32_advance_r
+#define pcg64i_advance_r pcg_setseq_64_advance_r
+
+#if PCG_HAS_128BIT_OPS
+ typedef struct pcg_state_setseq_128 pcg128i_random_t;
+#define pcg128i_random_r pcg_setseq_128_rxs_m_xs_128_random_r
+#define pcg128i_boundedrand_r pcg_setseq_128_rxs_m_xs_128_boundedrand_r
+#define pcg128i_srandom_r pcg_setseq_128_srandom_r
+#define pcg128i_advance_r pcg_setseq_128_advance_r
+#endif
+
+ extern uint32_t pcg32_random();
+ extern uint32_t pcg32_boundedrand(uint32_t bound);
+ extern void pcg32_srandom(uint64_t seed, uint64_t seq);
+ extern void pcg32_advance(uint64_t delta);
+
+#if PCG_HAS_128BIT_OPS
+ extern uint64_t pcg64_random();
+ extern uint64_t pcg64_boundedrand(uint64_t bound);
+ extern void pcg64_srandom(pcg128_t seed, pcg128_t seq);
+ extern void pcg64_advance(pcg128_t delta);
+#endif
+
+ /*
+ * Static initialization constants (if you can't call srandom for some
+ * bizarre reason).
+ */
+
+#define PCG32_INITIALIZER PCG_STATE_SETSEQ_64_INITIALIZER
+#define PCG32U_INITIALIZER PCG_STATE_UNIQUE_64_INITIALIZER
+#define PCG32S_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER
+#define PCG32F_INITIALIZER PCG_STATE_MCG_64_INITIALIZER
+
+#if PCG_HAS_128BIT_OPS
+#define PCG64_INITIALIZER PCG_STATE_SETSEQ_128_INITIALIZER
+#define PCG64U_INITIALIZER PCG_STATE_UNIQUE_128_INITIALIZER
+#define PCG64S_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER
+#define PCG64F_INITIALIZER PCG_STATE_MCG_128_INITIALIZER
+#endif
+
+#if PCG_HAS_128BIT_OPS
+#define PCG8SI_INITIALIZER PCG_STATE_ONESEQ_8_INITIALIZER
+#define PCG16SI_INITIALIZER PCG_STATE_ONESEQ_16_INITIALIZER
+#define PCG32SI_INITIALIZER PCG_STATE_ONESEQ_32_INITIALIZER
+#define PCG64SI_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER
+#define PCG128SI_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER
+#endif
+
+#if PCG_HAS_128BIT_OPS
+#define PCG8I_INITIALIZER PCG_STATE_SETSEQ_8_INITIALIZER
+#define PCG16I_INITIALIZER PCG_STATE_SETSEQ_16_INITIALIZER
+#define PCG32I_INITIALIZER PCG_STATE_SETSEQ_32_INITIALIZER
+#define PCG64I_INITIALIZER PCG_STATE_SETSEQ_64_INITIALIZER
+#define PCG128I_INITIALIZER PCG_STATE_SETSEQ_128_INITIALIZER
+#endif
+
+#if __cplusplus
+}
+#endif
+
+#endif // PCG_VARIANTS_H_INCLUDED
+
diff --git a/src/haversine_generator/libs/stb_sprintf.h b/src/haversine_generator/libs/stb_sprintf.h
new file mode 100644
index 0000000..ca432a6
--- /dev/null
+++ b/src/haversine_generator/libs/stb_sprintf.h
@@ -0,0 +1,1906 @@
+// stb_sprintf - v1.10 - public domain snprintf() implementation
+// originally by Jeff Roberts / RAD Game Tools, 2015/10/20
+// http://github.com/nothings/stb
+//
+// allowed types: sc uidBboXx p AaGgEef n
+// lengths : hh h ll j z t I64 I32 I
+//
+// Contributors:
+// Fabian "ryg" Giesen (reformatting)
+// github:aganm (attribute format)
+//
+// Contributors (bugfixes):
+// github:d26435
+// github:trex78
+// github:account-login
+// Jari Komppa (SI suffixes)
+// Rohit Nirmal
+// Marcin Wojdyr
+// Leonard Ritter
+// Stefano Zanotti
+// Adam Allison
+// Arvid Gerstmann
+// Markus Kolb
+//
+// LICENSE:
+//
+// See end of file for license information.
+
+#ifndef STB_SPRINTF_H_INCLUDE
+#define STB_SPRINTF_H_INCLUDE
+
+/*
+Single file sprintf replacement.
+
+Originally written by Jeff Roberts at RAD Game Tools - 2015/10/20.
+Hereby placed in public domain.
+
+This is a full sprintf replacement that supports everything that
+the C runtime sprintfs support, including float/double, 64-bit integers,
+hex floats, field parameters (%*.*d stuff), length reads backs, etc.
+
+Why would you need this if sprintf already exists? Well, first off,
+it's *much* faster (see below). It's also much smaller than the CRT
+versions code-space-wise. We've also added some simple improvements
+that are super handy (commas in thousands, callbacks at buffer full,
+for example). Finally, the format strings for MSVC and GCC differ
+for 64-bit integers (among other small things), so this lets you use
+the same format strings in cross platform code.
+
+It uses the standard single file trick of being both the header file
+and the source itself. If you just include it normally, you just get
+the header file function definitions. To get the code, you include
+it from a C or C++ file and define STB_SPRINTF_IMPLEMENTATION first.
+
+It only uses va_args macros from the C runtime to do it's work. It
+does cast doubles to S64s and shifts and divides U64s, which does
+drag in CRT code on most platforms.
+
+It compiles to roughly 8K with float support, and 4K without.
+As a comparison, when using MSVC static libs, calling sprintf drags
+in 16K.
+
+API:
+====
+int stbsp_sprintf( char * buf, char const * fmt, ... )
+int stbsp_snprintf( char * buf, int count, char const * fmt, ... )
+ Convert an arg list into a buffer. stbsp_snprintf always returns
+ a zero-terminated string (unlike regular snprintf).
+
+int stbsp_vsprintf( char * buf, char const * fmt, va_list va )
+int stbsp_vsnprintf( char * buf, int count, char const * fmt, va_list va )
+ Convert a va_list arg list into a buffer. stbsp_vsnprintf always returns
+ a zero-terminated string (unlike regular snprintf).
+
+int stbsp_vsprintfcb( STBSP_SPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va )
+ typedef char * STBSP_SPRINTFCB( char const * buf, void * user, int len );
+ Convert into a buffer, calling back every STB_SPRINTF_MIN chars.
+ Your callback can then copy the chars out, print them or whatever.
+ This function is actually the workhorse for everything else.
+ The buffer you pass in must hold at least STB_SPRINTF_MIN characters.
+ // you return the next buffer to use or 0 to stop converting
+
+void stbsp_set_separators( char comma, char period )
+ Set the comma and period characters to use.
+
+FLOATS/DOUBLES:
+===============
+This code uses a internal float->ascii conversion method that uses
+doubles with error correction (double-doubles, for ~105 bits of
+precision). This conversion is round-trip perfect - that is, an atof
+of the values output here will give you the bit-exact double back.
+
+One difference is that our insignificant digits will be different than
+with MSVC or GCC (but they don't match each other either). We also
+don't attempt to find the minimum length matching float (pre-MSVC15
+doesn't either).
+
+If you don't need float or doubles at all, define STB_SPRINTF_NOFLOAT
+and you'll save 4K of code space.
+
+64-BIT INTS:
+============
+This library also supports 64-bit integers and you can use MSVC style or
+GCC style indicators (%I64d or %lld). It supports the C99 specifiers
+for size_t and ptr_diff_t (%jd %zd) as well.
+
+EXTRAS:
+=======
+Like some GCCs, for integers and floats, you can use a ' (single quote)
+specifier and commas will be inserted on the thousands: "%'d" on 12345
+would print 12,345.
+
+For integers and floats, you can use a "$" specifier and the number
+will be converted to float and then divided to get kilo, mega, giga or
+tera and then printed, so "%$d" 1000 is "1.0 k", "%$.2d" 2536000 is
+"2.53 M", etc. For byte values, use two $:s, like "%$$d" to turn
+2536000 to "2.42 Mi". If you prefer JEDEC suffixes to SI ones, use three
+$:s: "%$$$d" -> "2.42 M". To remove the space between the number and the
+suffix, add "_" specifier: "%_$d" -> "2.53M".
+
+In addition to octal and hexadecimal conversions, you can print
+integers in binary: "%b" for 256 would print 100.
+
+PERFORMANCE vs MSVC 2008 32-/64-bit (GCC is even slower than MSVC):
+===================================================================
+"%d" across all 32-bit ints (4.8x/4.0x faster than 32-/64-bit MSVC)
+"%24d" across all 32-bit ints (4.5x/4.2x faster)
+"%x" across all 32-bit ints (4.5x/3.8x faster)
+"%08x" across all 32-bit ints (4.3x/3.8x faster)
+"%f" across e-10 to e+10 floats (7.3x/6.0x faster)
+"%e" across e-10 to e+10 floats (8.1x/6.0x faster)
+"%g" across e-10 to e+10 floats (10.0x/7.1x faster)
+"%f" for values near e-300 (7.9x/6.5x faster)
+"%f" for values near e+300 (10.0x/9.1x faster)
+"%e" for values near e-300 (10.1x/7.0x faster)
+"%e" for values near e+300 (9.2x/6.0x faster)
+"%.320f" for values near e-300 (12.6x/11.2x faster)
+"%a" for random values (8.6x/4.3x faster)
+"%I64d" for 64-bits with 32-bit values (4.8x/3.4x faster)
+"%I64d" for 64-bits > 32-bit values (4.9x/5.5x faster)
+"%s%s%s" for 64 char strings (7.1x/7.3x faster)
+"...512 char string..." ( 35.0x/32.5x faster!)
+*/
+
+#if defined(__clang__)
+ #if defined(__has_feature) && defined(__has_attribute)
+ #if __has_feature(address_sanitizer)
+ #if __has_attribute(__no_sanitize__)
+ #define STBSP__ASAN __attribute__((__no_sanitize__("address")))
+ #elif __has_attribute(__no_sanitize_address__)
+ #define STBSP__ASAN __attribute__((__no_sanitize_address__))
+ #elif __has_attribute(__no_address_safety_analysis__)
+ #define STBSP__ASAN __attribute__((__no_address_safety_analysis__))
+ #endif
+ #endif
+ #endif
+#elif defined(__GNUC__) && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
+ #if defined(__SANITIZE_ADDRESS__) && __SANITIZE_ADDRESS__
+ #define STBSP__ASAN __attribute__((__no_sanitize_address__))
+ #endif
+#endif
+
+#ifndef STBSP__ASAN
+#define STBSP__ASAN
+#endif
+
+#ifdef STB_SPRINTF_STATIC
+#define STBSP__PUBLICDEC static
+#define STBSP__PUBLICDEF static STBSP__ASAN
+#else
+#ifdef __cplusplus
+#define STBSP__PUBLICDEC extern "C"
+#define STBSP__PUBLICDEF extern "C" STBSP__ASAN
+#else
+#define STBSP__PUBLICDEC extern
+#define STBSP__PUBLICDEF STBSP__ASAN
+#endif
+#endif
+
+#if defined(__has_attribute)
+ #if __has_attribute(format)
+ #define STBSP__ATTRIBUTE_FORMAT(fmt,va) __attribute__((format(printf,fmt,va)))
+ #endif
+#endif
+
+#ifndef STBSP__ATTRIBUTE_FORMAT
+#define STBSP__ATTRIBUTE_FORMAT(fmt,va)
+#endif
+
+#ifdef _MSC_VER
+#define STBSP__NOTUSED(v) (void)(v)
+#else
+#define STBSP__NOTUSED(v) (void)sizeof(v)
+#endif
+
+#include <stdarg.h> // for va_arg(), va_list()
+#include <stddef.h> // size_t, ptrdiff_t
+
+#ifndef STB_SPRINTF_MIN
+#define STB_SPRINTF_MIN 512 // how many characters per callback
+#endif
+typedef char *STBSP_SPRINTFCB(const char *buf, void *user, int len);
+
+#ifndef STB_SPRINTF_DECORATE
+#define STB_SPRINTF_DECORATE(name) stbsp_##name // define this before including if you want to change the names
+#endif
+
+STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsprintf)(char *buf, char const *fmt, va_list va);
+STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsnprintf)(char *buf, int count, char const *fmt, va_list va);
+STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(sprintf)(char *buf, char const *fmt, ...) STBSP__ATTRIBUTE_FORMAT(2,3);
+STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(snprintf)(char *buf, int count, char const *fmt, ...) STBSP__ATTRIBUTE_FORMAT(3,4);
+
+STBSP__PUBLICDEC int STB_SPRINTF_DECORATE(vsprintfcb)(STBSP_SPRINTFCB *callback, void *user, char *buf, char const *fmt, va_list va);
+STBSP__PUBLICDEC void STB_SPRINTF_DECORATE(set_separators)(char comma, char period);
+
+#endif // STB_SPRINTF_H_INCLUDE
+
+#ifdef STB_SPRINTF_IMPLEMENTATION
+
+#define stbsp__uint32 unsigned int
+#define stbsp__int32 signed int
+
+#ifdef _MSC_VER
+#define stbsp__uint64 unsigned __int64
+#define stbsp__int64 signed __int64
+#else
+#define stbsp__uint64 unsigned long long
+#define stbsp__int64 signed long long
+#endif
+#define stbsp__uint16 unsigned short
+
+#ifndef stbsp__uintptr
+#if defined(__ppc64__) || defined(__powerpc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64) || defined(__s390x__)
+#define stbsp__uintptr stbsp__uint64
+#else
+#define stbsp__uintptr stbsp__uint32
+#endif
+#endif
+
+#ifndef STB_SPRINTF_MSVC_MODE // used for MSVC2013 and earlier (MSVC2015 matches GCC)
+#if defined(_MSC_VER) && (_MSC_VER < 1900)
+#define STB_SPRINTF_MSVC_MODE
+#endif
+#endif
+
+#ifdef STB_SPRINTF_NOUNALIGNED // define this before inclusion to force stbsp_sprintf to always use aligned accesses
+#define STBSP__UNALIGNED(code)
+#else
+#define STBSP__UNALIGNED(code) code
+#endif
+
+#ifndef STB_SPRINTF_NOFLOAT
+// internal float utility functions
+static stbsp__int32 stbsp__real_to_str(char const **start, stbsp__uint32 *len, char *out, stbsp__int32 *decimal_pos, double value, stbsp__uint32 frac_digits);
+static stbsp__int32 stbsp__real_to_parts(stbsp__int64 *bits, stbsp__int32 *expo, double value);
+#define STBSP__SPECIAL 0x7000
+#endif
+
+static char stbsp__period = '.';
+static char stbsp__comma = ',';
+static struct
+{
+ short temp; // force next field to be 2-byte aligned
+ char pair[201];
+} stbsp__digitpair =
+{
+ 0,
+ "00010203040506070809101112131415161718192021222324"
+ "25262728293031323334353637383940414243444546474849"
+ "50515253545556575859606162636465666768697071727374"
+ "75767778798081828384858687888990919293949596979899"
+};
+
+STBSP__PUBLICDEF void STB_SPRINTF_DECORATE(set_separators)(char pcomma, char pperiod)
+{
+ stbsp__period = pperiod;
+ stbsp__comma = pcomma;
+}
+
+#define STBSP__LEFTJUST 1
+#define STBSP__LEADINGPLUS 2
+#define STBSP__LEADINGSPACE 4
+#define STBSP__LEADING_0X 8
+#define STBSP__LEADINGZERO 16
+#define STBSP__INTMAX 32
+#define STBSP__TRIPLET_COMMA 64
+#define STBSP__NEGATIVE 128
+#define STBSP__METRIC_SUFFIX 256
+#define STBSP__HALFWIDTH 512
+#define STBSP__METRIC_NOSPACE 1024
+#define STBSP__METRIC_1024 2048
+#define STBSP__METRIC_JEDEC 4096
+
+static void stbsp__lead_sign(stbsp__uint32 fl, char *sign)
+{
+ sign[0] = 0;
+ if (fl & STBSP__NEGATIVE) {
+ sign[0] = 1;
+ sign[1] = '-';
+ } else if (fl & STBSP__LEADINGSPACE) {
+ sign[0] = 1;
+ sign[1] = ' ';
+ } else if (fl & STBSP__LEADINGPLUS) {
+ sign[0] = 1;
+ sign[1] = '+';
+ }
+}
+
+static STBSP__ASAN stbsp__uint32 stbsp__strlen_limited(char const *s, stbsp__uint32 limit)
+{
+ char const * sn = s;
+
+ // get up to 4-byte alignment
+ for (;;) {
+ if (((stbsp__uintptr)sn & 3) == 0)
+ break;
+
+ if (!limit || *sn == 0)
+ return (stbsp__uint32)(sn - s);
+
+ ++sn;
+ --limit;
+ }
+
+ // scan over 4 bytes at a time to find terminating 0
+ // this will intentionally scan up to 3 bytes past the end of buffers,
+ // but becase it works 4B aligned, it will never cross page boundaries
+ // (hence the STBSP__ASAN markup; the over-read here is intentional
+ // and harmless)
+ while (limit >= 4) {
+ stbsp__uint32 v = *(stbsp__uint32 *)sn;
+ // bit hack to find if there's a 0 byte in there
+ if ((v - 0x01010101) & (~v) & 0x80808080UL)
+ break;
+
+ sn += 4;
+ limit -= 4;
+ }
+
+ // handle the last few characters to find actual size
+ while (limit && *sn) {
+ ++sn;
+ --limit;
+ }
+
+ return (stbsp__uint32)(sn - s);
+}
+
+STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(vsprintfcb)(STBSP_SPRINTFCB *callback, void *user, char *buf, char const *fmt, va_list va)
+{
+ static char hex[] = "0123456789abcdefxp";
+ static char hexu[] = "0123456789ABCDEFXP";
+ char *bf;
+ char const *f;
+ int tlen = 0;
+
+ bf = buf;
+ f = fmt;
+ for (;;) {
+ stbsp__int32 fw, pr, tz;
+ stbsp__uint32 fl;
+
+ // macros for the callback buffer stuff
+ #define stbsp__chk_cb_bufL(bytes) \
+ { \
+ int len = (int)(bf - buf); \
+ if ((len + (bytes)) >= STB_SPRINTF_MIN) { \
+ tlen += len; \
+ if (0 == (bf = buf = callback(buf, user, len))) \
+ goto done; \
+ } \
+ }
+ #define stbsp__chk_cb_buf(bytes) \
+ { \
+ if (callback) { \
+ stbsp__chk_cb_bufL(bytes); \
+ } \
+ }
+ #define stbsp__flush_cb() \
+ { \
+ stbsp__chk_cb_bufL(STB_SPRINTF_MIN - 1); \
+ } // flush if there is even one byte in the buffer
+ #define stbsp__cb_buf_clamp(cl, v) \
+ cl = v; \
+ if (callback) { \
+ int lg = STB_SPRINTF_MIN - (int)(bf - buf); \
+ if (cl > lg) \
+ cl = lg; \
+ }
+
+ // fast copy everything up to the next % (or end of string)
+ for (;;) {
+ while (((stbsp__uintptr)f) & 3) {
+ schk1:
+ if (f[0] == '%')
+ goto scandd;
+ schk2:
+ if (f[0] == 0)
+ goto endfmt;
+ stbsp__chk_cb_buf(1);
+ *bf++ = f[0];
+ ++f;
+ }
+ for (;;) {
+ // Check if the next 4 bytes contain %(0x25) or end of string.
+ // Using the 'hasless' trick:
+ // https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
+ stbsp__uint32 v, c;
+ v = *(stbsp__uint32 *)f;
+ c = (~v) & 0x80808080;
+ if (((v ^ 0x25252525) - 0x01010101) & c)
+ goto schk1;
+ if ((v - 0x01010101) & c)
+ goto schk2;
+ if (callback)
+ if ((STB_SPRINTF_MIN - (int)(bf - buf)) < 4)
+ goto schk1;
+ #ifdef STB_SPRINTF_NOUNALIGNED
+ if(((stbsp__uintptr)bf) & 3) {
+ bf[0] = f[0];
+ bf[1] = f[1];
+ bf[2] = f[2];
+ bf[3] = f[3];
+ } else
+ #endif
+ {
+ *(stbsp__uint32 *)bf = v;
+ }
+ bf += 4;
+ f += 4;
+ }
+ }
+ scandd:
+
+ ++f;
+
+ // ok, we have a percent, read the modifiers first
+ fw = 0;
+ pr = -1;
+ fl = 0;
+ tz = 0;
+
+ // flags
+ for (;;) {
+ switch (f[0]) {
+ // if we have left justify
+ case '-':
+ fl |= STBSP__LEFTJUST;
+ ++f;
+ continue;
+ // if we have leading plus
+ case '+':
+ fl |= STBSP__LEADINGPLUS;
+ ++f;
+ continue;
+ // if we have leading space
+ case ' ':
+ fl |= STBSP__LEADINGSPACE;
+ ++f;
+ continue;
+ // if we have leading 0x
+ case '#':
+ fl |= STBSP__LEADING_0X;
+ ++f;
+ continue;
+ // if we have thousand commas
+ case '\'':
+ fl |= STBSP__TRIPLET_COMMA;
+ ++f;
+ continue;
+ // if we have kilo marker (none->kilo->kibi->jedec)
+ case '$':
+ if (fl & STBSP__METRIC_SUFFIX) {
+ if (fl & STBSP__METRIC_1024) {
+ fl |= STBSP__METRIC_JEDEC;
+ } else {
+ fl |= STBSP__METRIC_1024;
+ }
+ } else {
+ fl |= STBSP__METRIC_SUFFIX;
+ }
+ ++f;
+ continue;
+ // if we don't want space between metric suffix and number
+ case '_':
+ fl |= STBSP__METRIC_NOSPACE;
+ ++f;
+ continue;
+ // if we have leading zero
+ case '0':
+ fl |= STBSP__LEADINGZERO;
+ ++f;
+ goto flags_done;
+ default: goto flags_done;
+ }
+ }
+ flags_done:
+
+ // get the field width
+ if (f[0] == '*') {
+ fw = va_arg(va, stbsp__uint32);
+ ++f;
+ } else {
+ while ((f[0] >= '0') && (f[0] <= '9')) {
+ fw = fw * 10 + f[0] - '0';
+ f++;
+ }
+ }
+ // get the precision
+ if (f[0] == '.') {
+ ++f;
+ if (f[0] == '*') {
+ pr = va_arg(va, stbsp__uint32);
+ ++f;
+ } else {
+ pr = 0;
+ while ((f[0] >= '0') && (f[0] <= '9')) {
+ pr = pr * 10 + f[0] - '0';
+ f++;
+ }
+ }
+ }
+
+ // handle integer size overrides
+ switch (f[0]) {
+ // are we halfwidth?
+ case 'h':
+ fl |= STBSP__HALFWIDTH;
+ ++f;
+ if (f[0] == 'h')
+ ++f; // QUARTERWIDTH
+ break;
+ // are we 64-bit (unix style)
+ case 'l':
+ fl |= ((sizeof(long) == 8) ? STBSP__INTMAX : 0);
+ ++f;
+ if (f[0] == 'l') {
+ fl |= STBSP__INTMAX;
+ ++f;
+ }
+ break;
+ // are we 64-bit on intmax? (c99)
+ case 'j':
+ fl |= (sizeof(size_t) == 8) ? STBSP__INTMAX : 0;
+ ++f;
+ break;
+ // are we 64-bit on size_t or ptrdiff_t? (c99)
+ case 'z':
+ fl |= (sizeof(ptrdiff_t) == 8) ? STBSP__INTMAX : 0;
+ ++f;
+ break;
+ case 't':
+ fl |= (sizeof(ptrdiff_t) == 8) ? STBSP__INTMAX : 0;
+ ++f;
+ break;
+ // are we 64-bit (msft style)
+ case 'I':
+ if ((f[1] == '6') && (f[2] == '4')) {
+ fl |= STBSP__INTMAX;
+ f += 3;
+ } else if ((f[1] == '3') && (f[2] == '2')) {
+ f += 3;
+ } else {
+ fl |= ((sizeof(void *) == 8) ? STBSP__INTMAX : 0);
+ ++f;
+ }
+ break;
+ default: break;
+ }
+
+ // handle each replacement
+ switch (f[0]) {
+ #define STBSP__NUMSZ 512 // big enough for e308 (with commas) or e-307
+ char num[STBSP__NUMSZ];
+ char lead[8];
+ char tail[8];
+ char *s;
+ char const *h;
+ stbsp__uint32 l, n, cs;
+ stbsp__uint64 n64;
+#ifndef STB_SPRINTF_NOFLOAT
+ double fv;
+#endif
+ stbsp__int32 dp;
+ char const *sn;
+
+ case 's':
+ // get the string
+ s = va_arg(va, char *);
+ if (s == 0)
+ s = (char *)"null";
+ // get the length, limited to desired precision
+ // always limit to ~0u chars since our counts are 32b
+ l = stbsp__strlen_limited(s, (pr >= 0) ? pr : ~0u);
+ lead[0] = 0;
+ tail[0] = 0;
+ pr = 0;
+ dp = 0;
+ cs = 0;
+ // copy the string in
+ goto scopy;
+
+ case 'c': // char
+ // get the character
+ s = num + STBSP__NUMSZ - 1;
+ *s = (char)va_arg(va, int);
+ l = 1;
+ lead[0] = 0;
+ tail[0] = 0;
+ pr = 0;
+ dp = 0;
+ cs = 0;
+ goto scopy;
+
+ case 'n': // weird write-bytes specifier
+ {
+ int *d = va_arg(va, int *);
+ *d = tlen + (int)(bf - buf);
+ } break;
+
+#ifdef STB_SPRINTF_NOFLOAT
+ case 'A': // float
+ case 'a': // hex float
+ case 'G': // float
+ case 'g': // float
+ case 'E': // float
+ case 'e': // float
+ case 'f': // float
+ va_arg(va, double); // eat it
+ s = (char *)"No float";
+ l = 8;
+ lead[0] = 0;
+ tail[0] = 0;
+ pr = 0;
+ cs = 0;
+ STBSP__NOTUSED(dp);
+ goto scopy;
+#else
+ case 'A': // hex float
+ case 'a': // hex float
+ h = (f[0] == 'A') ? hexu : hex;
+ fv = va_arg(va, double);
+ if (pr == -1)
+ pr = 6; // default is 6
+ // read the double into a string
+ if (stbsp__real_to_parts((stbsp__int64 *)&n64, &dp, fv))
+ fl |= STBSP__NEGATIVE;
+
+ s = num + 64;
+
+ stbsp__lead_sign(fl, lead);
+
+ if (dp == -1023)
+ dp = (n64) ? -1022 : 0;
+ else
+ n64 |= (((stbsp__uint64)1) << 52);
+ n64 <<= (64 - 56);
+ if (pr < 15)
+ n64 += ((((stbsp__uint64)8) << 56) >> (pr * 4));
+// add leading chars
+
+#ifdef STB_SPRINTF_MSVC_MODE
+ *s++ = '0';
+ *s++ = 'x';
+#else
+ lead[1 + lead[0]] = '0';
+ lead[2 + lead[0]] = 'x';
+ lead[0] += 2;
+#endif
+ *s++ = h[(n64 >> 60) & 15];
+ n64 <<= 4;
+ if (pr)
+ *s++ = stbsp__period;
+ sn = s;
+
+ // print the bits
+ n = pr;
+ if (n > 13)
+ n = 13;
+ if (pr > (stbsp__int32)n)
+ tz = pr - n;
+ pr = 0;
+ while (n--) {
+ *s++ = h[(n64 >> 60) & 15];
+ n64 <<= 4;
+ }
+
+ // print the expo
+ tail[1] = h[17];
+ if (dp < 0) {
+ tail[2] = '-';
+ dp = -dp;
+ } else
+ tail[2] = '+';
+ n = (dp >= 1000) ? 6 : ((dp >= 100) ? 5 : ((dp >= 10) ? 4 : 3));
+ tail[0] = (char)n;
+ for (;;) {
+ tail[n] = '0' + dp % 10;
+ if (n <= 3)
+ break;
+ --n;
+ dp /= 10;
+ }
+
+ dp = (int)(s - sn);
+ l = (int)(s - (num + 64));
+ s = num + 64;
+ cs = 1 + (3 << 24);
+ goto scopy;
+
+ case 'G': // float
+ case 'g': // float
+ h = (f[0] == 'G') ? hexu : hex;
+ fv = va_arg(va, double);
+ if (pr == -1)
+ pr = 6;
+ else if (pr == 0)
+ pr = 1; // default is 6
+ // read the double into a string
+ if (stbsp__real_to_str(&sn, &l, num, &dp, fv, (pr - 1) | 0x80000000))
+ fl |= STBSP__NEGATIVE;
+
+ // clamp the precision and delete extra zeros after clamp
+ n = pr;
+ if (l > (stbsp__uint32)pr)
+ l = pr;
+ while ((l > 1) && (pr) && (sn[l - 1] == '0')) {
+ --pr;
+ --l;
+ }
+
+ // should we use %e
+ if ((dp <= -4) || (dp > (stbsp__int32)n)) {
+ if (pr > (stbsp__int32)l)
+ pr = l - 1;
+ else if (pr)
+ --pr; // when using %e, there is one digit before the decimal
+ goto doexpfromg;
+ }
+ // this is the insane action to get the pr to match %g semantics for %f
+ if (dp > 0) {
+ pr = (dp < (stbsp__int32)l) ? l - dp : 0;
+ } else {
+ pr = -dp + ((pr > (stbsp__int32)l) ? (stbsp__int32) l : pr);
+ }
+ goto dofloatfromg;
+
+ case 'E': // float
+ case 'e': // float
+ h = (f[0] == 'E') ? hexu : hex;
+ fv = va_arg(va, double);
+ if (pr == -1)
+ pr = 6; // default is 6
+ // read the double into a string
+ if (stbsp__real_to_str(&sn, &l, num, &dp, fv, pr | 0x80000000))
+ fl |= STBSP__NEGATIVE;
+ doexpfromg:
+ tail[0] = 0;
+ stbsp__lead_sign(fl, lead);
+ if (dp == STBSP__SPECIAL) {
+ s = (char *)sn;
+ cs = 0;
+ pr = 0;
+ goto scopy;
+ }
+ s = num + 64;
+ // handle leading chars
+ *s++ = sn[0];
+
+ if (pr)
+ *s++ = stbsp__period;
+
+ // handle after decimal
+ if ((l - 1) > (stbsp__uint32)pr)
+ l = pr + 1;
+ for (n = 1; n < l; n++)
+ *s++ = sn[n];
+ // trailing zeros
+ tz = pr - (l - 1);
+ pr = 0;
+ // dump expo
+ tail[1] = h[0xe];
+ dp -= 1;
+ if (dp < 0) {
+ tail[2] = '-';
+ dp = -dp;
+ } else
+ tail[2] = '+';
+#ifdef STB_SPRINTF_MSVC_MODE
+ n = 5;
+#else
+ n = (dp >= 100) ? 5 : 4;
+#endif
+ tail[0] = (char)n;
+ for (;;) {
+ tail[n] = '0' + dp % 10;
+ if (n <= 3)
+ break;
+ --n;
+ dp /= 10;
+ }
+ cs = 1 + (3 << 24); // how many tens
+ goto flt_lead;
+
+ case 'f': // float
+ fv = va_arg(va, double);
+ doafloat:
+ // do kilos
+ if (fl & STBSP__METRIC_SUFFIX) {
+ double divisor;
+ divisor = 1000.0f;
+ if (fl & STBSP__METRIC_1024)
+ divisor = 1024.0;
+ while (fl < 0x4000000) {
+ if ((fv < divisor) && (fv > -divisor))
+ break;
+ fv /= divisor;
+ fl += 0x1000000;
+ }
+ }
+ if (pr == -1)
+ pr = 6; // default is 6
+ // read the double into a string
+ if (stbsp__real_to_str(&sn, &l, num, &dp, fv, pr))
+ fl |= STBSP__NEGATIVE;
+ dofloatfromg:
+ tail[0] = 0;
+ stbsp__lead_sign(fl, lead);
+ if (dp == STBSP__SPECIAL) {
+ s = (char *)sn;
+ cs = 0;
+ pr = 0;
+ goto scopy;
+ }
+ s = num + 64;
+
+ // handle the three decimal varieties
+ if (dp <= 0) {
+ stbsp__int32 i;
+ // handle 0.000*000xxxx
+ *s++ = '0';
+ if (pr)
+ *s++ = stbsp__period;
+ n = -dp;
+ if ((stbsp__int32)n > pr)
+ n = pr;
+ i = n;
+ while (i) {
+ if ((((stbsp__uintptr)s) & 3) == 0)
+ break;
+ *s++ = '0';
+ --i;
+ }
+ while (i >= 4) {
+ *(stbsp__uint32 *)s = 0x30303030;
+ s += 4;
+ i -= 4;
+ }
+ while (i) {
+ *s++ = '0';
+ --i;
+ }
+ if ((stbsp__int32)(l + n) > pr)
+ l = pr - n;
+ i = l;
+ while (i) {
+ *s++ = *sn++;
+ --i;
+ }
+ tz = pr - (n + l);
+ cs = 1 + (3 << 24); // how many tens did we write (for commas below)
+ } else {
+ cs = (fl & STBSP__TRIPLET_COMMA) ? ((600 - (stbsp__uint32)dp) % 3) : 0;
+ if ((stbsp__uint32)dp >= l) {
+ // handle xxxx000*000.0
+ n = 0;
+ for (;;) {
+ if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
+ cs = 0;
+ *s++ = stbsp__comma;
+ } else {
+ *s++ = sn[n];
+ ++n;
+ if (n >= l)
+ break;
+ }
+ }
+ if (n < (stbsp__uint32)dp) {
+ n = dp - n;
+ if ((fl & STBSP__TRIPLET_COMMA) == 0) {
+ while (n) {
+ if ((((stbsp__uintptr)s) & 3) == 0)
+ break;
+ *s++ = '0';
+ --n;
+ }
+ while (n >= 4) {
+ *(stbsp__uint32 *)s = 0x30303030;
+ s += 4;
+ n -= 4;
+ }
+ }
+ while (n) {
+ if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
+ cs = 0;
+ *s++ = stbsp__comma;
+ } else {
+ *s++ = '0';
+ --n;
+ }
+ }
+ }
+ cs = (int)(s - (num + 64)) + (3 << 24); // cs is how many tens
+ if (pr) {
+ *s++ = stbsp__period;
+ tz = pr;
+ }
+ } else {
+ // handle xxxxx.xxxx000*000
+ n = 0;
+ for (;;) {
+ if ((fl & STBSP__TRIPLET_COMMA) && (++cs == 4)) {
+ cs = 0;
+ *s++ = stbsp__comma;
+ } else {
+ *s++ = sn[n];
+ ++n;
+ if (n >= (stbsp__uint32)dp)
+ break;
+ }
+ }
+ cs = (int)(s - (num + 64)) + (3 << 24); // cs is how many tens
+ if (pr)
+ *s++ = stbsp__period;
+ if ((l - dp) > (stbsp__uint32)pr)
+ l = pr + dp;
+ while (n < l) {
+ *s++ = sn[n];
+ ++n;
+ }
+ tz = pr - (l - dp);
+ }
+ }
+ pr = 0;
+
+ // handle k,m,g,t
+ if (fl & STBSP__METRIC_SUFFIX) {
+ char idx;
+ idx = 1;
+ if (fl & STBSP__METRIC_NOSPACE)
+ idx = 0;
+ tail[0] = idx;
+ tail[1] = ' ';
+ {
+ if (fl >> 24) { // SI kilo is 'k', JEDEC and SI kibits are 'K'.
+ if (fl & STBSP__METRIC_1024)
+ tail[idx + 1] = "_KMGT"[fl >> 24];
+ else
+ tail[idx + 1] = "_kMGT"[fl >> 24];
+ idx++;
+ // If printing kibits and not in jedec, add the 'i'.
+ if (fl & STBSP__METRIC_1024 && !(fl & STBSP__METRIC_JEDEC)) {
+ tail[idx + 1] = 'i';
+ idx++;
+ }
+ tail[0] = idx;
+ }
+ }
+ };
+
+ flt_lead:
+ // get the length that we copied
+ l = (stbsp__uint32)(s - (num + 64));
+ s = num + 64;
+ goto scopy;
+#endif
+
+ case 'B': // upper binary
+ case 'b': // lower binary
+ h = (f[0] == 'B') ? hexu : hex;
+ lead[0] = 0;
+ if (fl & STBSP__LEADING_0X) {
+ lead[0] = 2;
+ lead[1] = '0';
+ lead[2] = h[0xb];
+ }
+ l = (8 << 4) | (1 << 8);
+ goto radixnum;
+
+ case 'o': // octal
+ h = hexu;
+ lead[0] = 0;
+ if (fl & STBSP__LEADING_0X) {
+ lead[0] = 1;
+ lead[1] = '0';
+ }
+ l = (3 << 4) | (3 << 8);
+ goto radixnum;
+
+ case 'p': // pointer
+ fl |= (sizeof(void *) == 8) ? STBSP__INTMAX : 0;
+ pr = sizeof(void *) * 2;
+ fl &= ~STBSP__LEADINGZERO; // 'p' only prints the pointer with zeros
+ // fall through - to X
+
+ case 'X': // upper hex
+ case 'x': // lower hex
+ h = (f[0] == 'X') ? hexu : hex;
+ l = (4 << 4) | (4 << 8);
+ lead[0] = 0;
+ if (fl & STBSP__LEADING_0X) {
+ lead[0] = 2;
+ lead[1] = '0';
+ lead[2] = h[16];
+ }
+ radixnum:
+ // get the number
+ if (fl & STBSP__INTMAX)
+ n64 = va_arg(va, stbsp__uint64);
+ else
+ n64 = va_arg(va, stbsp__uint32);
+
+ s = num + STBSP__NUMSZ;
+ dp = 0;
+ // clear tail, and clear leading if value is zero
+ tail[0] = 0;
+ if (n64 == 0) {
+ lead[0] = 0;
+ if (pr == 0) {
+ l = 0;
+ cs = 0;
+ goto scopy;
+ }
+ }
+ // convert to string
+ for (;;) {
+ *--s = h[n64 & ((1 << (l >> 8)) - 1)];
+ n64 >>= (l >> 8);
+ if (!((n64) || ((stbsp__int32)((num + STBSP__NUMSZ) - s) < pr)))
+ break;
+ if (fl & STBSP__TRIPLET_COMMA) {
+ ++l;
+ if ((l & 15) == ((l >> 4) & 15)) {
+ l &= ~15;
+ *--s = stbsp__comma;
+ }
+ }
+ };
+ // get the tens and the comma pos
+ cs = (stbsp__uint32)((num + STBSP__NUMSZ) - s) + ((((l >> 4) & 15)) << 24);
+ // get the length that we copied
+ l = (stbsp__uint32)((num + STBSP__NUMSZ) - s);
+ // copy it
+ goto scopy;
+
+ case 'u': // unsigned
+ case 'i':
+ case 'd': // integer
+ // get the integer and abs it
+ if (fl & STBSP__INTMAX) {
+ stbsp__int64 i64 = va_arg(va, stbsp__int64);
+ n64 = (stbsp__uint64)i64;
+ if ((f[0] != 'u') && (i64 < 0)) {
+ n64 = (stbsp__uint64)-i64;
+ fl |= STBSP__NEGATIVE;
+ }
+ } else {
+ stbsp__int32 i = va_arg(va, stbsp__int32);
+ n64 = (stbsp__uint32)i;
+ if ((f[0] != 'u') && (i < 0)) {
+ n64 = (stbsp__uint32)-i;
+ fl |= STBSP__NEGATIVE;
+ }
+ }
+
+#ifndef STB_SPRINTF_NOFLOAT
+ if (fl & STBSP__METRIC_SUFFIX) {
+ if (n64 < 1024)
+ pr = 0;
+ else if (pr == -1)
+ pr = 1;
+ fv = (double)(stbsp__int64)n64;
+ goto doafloat;
+ }
+#endif
+
+ // convert to string
+ s = num + STBSP__NUMSZ;
+ l = 0;
+
+ for (;;) {
+ // do in 32-bit chunks (avoid lots of 64-bit divides even with constant denominators)
+ char *o = s - 8;
+ if (n64 >= 100000000) {
+ n = (stbsp__uint32)(n64 % 100000000);
+ n64 /= 100000000;
+ } else {
+ n = (stbsp__uint32)n64;
+ n64 = 0;
+ }
+ if ((fl & STBSP__TRIPLET_COMMA) == 0) {
+ do {
+ s -= 2;
+ *(stbsp__uint16 *)s = *(stbsp__uint16 *)&stbsp__digitpair.pair[(n % 100) * 2];
+ n /= 100;
+ } while (n);
+ }
+ while (n) {
+ if ((fl & STBSP__TRIPLET_COMMA) && (l++ == 3)) {
+ l = 0;
+ *--s = stbsp__comma;
+ --o;
+ } else {
+ *--s = (char)(n % 10) + '0';
+ n /= 10;
+ }
+ }
+ if (n64 == 0) {
+ if ((s[0] == '0') && (s != (num + STBSP__NUMSZ)))
+ ++s;
+ break;
+ }
+ while (s != o)
+ if ((fl & STBSP__TRIPLET_COMMA) && (l++ == 3)) {
+ l = 0;
+ *--s = stbsp__comma;
+ --o;
+ } else {
+ *--s = '0';
+ }
+ }
+
+ tail[0] = 0;
+ stbsp__lead_sign(fl, lead);
+
+ // get the length that we copied
+ l = (stbsp__uint32)((num + STBSP__NUMSZ) - s);
+ if (l == 0) {
+ *--s = '0';
+ l = 1;
+ }
+ cs = l + (3 << 24);
+ if (pr < 0)
+ pr = 0;
+
+ scopy:
+ // get fw=leading/trailing space, pr=leading zeros
+ if (pr < (stbsp__int32)l)
+ pr = l;
+ n = pr + lead[0] + tail[0] + tz;
+ if (fw < (stbsp__int32)n)
+ fw = n;
+ fw -= n;
+ pr -= l;
+
+ // handle right justify and leading zeros
+ if ((fl & STBSP__LEFTJUST) == 0) {
+ if (fl & STBSP__LEADINGZERO) // if leading zeros, everything is in pr
+ {
+ pr = (fw > pr) ? fw : pr;
+ fw = 0;
+ } else {
+ fl &= ~STBSP__TRIPLET_COMMA; // if no leading zeros, then no commas
+ }
+ }
+
+ // copy the spaces and/or zeros
+ if (fw + pr) {
+ stbsp__int32 i;
+ stbsp__uint32 c;
+
+ // copy leading spaces (or when doing %8.4d stuff)
+ if ((fl & STBSP__LEFTJUST) == 0)
+ while (fw > 0) {
+ stbsp__cb_buf_clamp(i, fw);
+ fw -= i;
+ while (i) {
+ if ((((stbsp__uintptr)bf) & 3) == 0)
+ break;
+ *bf++ = ' ';
+ --i;
+ }
+ while (i >= 4) {
+ *(stbsp__uint32 *)bf = 0x20202020;
+ bf += 4;
+ i -= 4;
+ }
+ while (i) {
+ *bf++ = ' ';
+ --i;
+ }
+ stbsp__chk_cb_buf(1);
+ }
+
+ // copy leader
+ sn = lead + 1;
+ while (lead[0]) {
+ stbsp__cb_buf_clamp(i, lead[0]);
+ lead[0] -= (char)i;
+ while (i) {
+ *bf++ = *sn++;
+ --i;
+ }
+ stbsp__chk_cb_buf(1);
+ }
+
+ // copy leading zeros
+ c = cs >> 24;
+ cs &= 0xffffff;
+ cs = (fl & STBSP__TRIPLET_COMMA) ? ((stbsp__uint32)(c - ((pr + cs) % (c + 1)))) : 0;
+ while (pr > 0) {
+ stbsp__cb_buf_clamp(i, pr);
+ pr -= i;
+ if ((fl & STBSP__TRIPLET_COMMA) == 0) {
+ while (i) {
+ if ((((stbsp__uintptr)bf) & 3) == 0)
+ break;
+ *bf++ = '0';
+ --i;
+ }
+ while (i >= 4) {
+ *(stbsp__uint32 *)bf = 0x30303030;
+ bf += 4;
+ i -= 4;
+ }
+ }
+ while (i) {
+ if ((fl & STBSP__TRIPLET_COMMA) && (cs++ == c)) {
+ cs = 0;
+ *bf++ = stbsp__comma;
+ } else
+ *bf++ = '0';
+ --i;
+ }
+ stbsp__chk_cb_buf(1);
+ }
+ }
+
+ // copy leader if there is still one
+ sn = lead + 1;
+ while (lead[0]) {
+ stbsp__int32 i;
+ stbsp__cb_buf_clamp(i, lead[0]);
+ lead[0] -= (char)i;
+ while (i) {
+ *bf++ = *sn++;
+ --i;
+ }
+ stbsp__chk_cb_buf(1);
+ }
+
+ // copy the string
+ n = l;
+ while (n) {
+ stbsp__int32 i;
+ stbsp__cb_buf_clamp(i, n);
+ n -= i;
+ STBSP__UNALIGNED(while (i >= 4) {
+ *(stbsp__uint32 volatile *)bf = *(stbsp__uint32 volatile *)s;
+ bf += 4;
+ s += 4;
+ i -= 4;
+ })
+ while (i) {
+ *bf++ = *s++;
+ --i;
+ }
+ stbsp__chk_cb_buf(1);
+ }
+
+ // copy trailing zeros
+ while (tz) {
+ stbsp__int32 i;
+ stbsp__cb_buf_clamp(i, tz);
+ tz -= i;
+ while (i) {
+ if ((((stbsp__uintptr)bf) & 3) == 0)
+ break;
+ *bf++ = '0';
+ --i;
+ }
+ while (i >= 4) {
+ *(stbsp__uint32 *)bf = 0x30303030;
+ bf += 4;
+ i -= 4;
+ }
+ while (i) {
+ *bf++ = '0';
+ --i;
+ }
+ stbsp__chk_cb_buf(1);
+ }
+
+ // copy tail if there is one
+ sn = tail + 1;
+ while (tail[0]) {
+ stbsp__int32 i;
+ stbsp__cb_buf_clamp(i, tail[0]);
+ tail[0] -= (char)i;
+ while (i) {
+ *bf++ = *sn++;
+ --i;
+ }
+ stbsp__chk_cb_buf(1);
+ }
+
+ // handle the left justify
+ if (fl & STBSP__LEFTJUST)
+ if (fw > 0) {
+ while (fw) {
+ stbsp__int32 i;
+ stbsp__cb_buf_clamp(i, fw);
+ fw -= i;
+ while (i) {
+ if ((((stbsp__uintptr)bf) & 3) == 0)
+ break;
+ *bf++ = ' ';
+ --i;
+ }
+ while (i >= 4) {
+ *(stbsp__uint32 *)bf = 0x20202020;
+ bf += 4;
+ i -= 4;
+ }
+ while (i--)
+ *bf++ = ' ';
+ stbsp__chk_cb_buf(1);
+ }
+ }
+ break;
+
+ default: // unknown, just copy code
+ s = num + STBSP__NUMSZ - 1;
+ *s = f[0];
+ l = 1;
+ fw = fl = 0;
+ lead[0] = 0;
+ tail[0] = 0;
+ pr = 0;
+ dp = 0;
+ cs = 0;
+ goto scopy;
+ }
+ ++f;
+ }
+endfmt:
+
+ if (!callback)
+ *bf = 0;
+ else
+ stbsp__flush_cb();
+
+done:
+ return tlen + (int)(bf - buf);
+}
+
+// cleanup
+#undef STBSP__LEFTJUST
+#undef STBSP__LEADINGPLUS
+#undef STBSP__LEADINGSPACE
+#undef STBSP__LEADING_0X
+#undef STBSP__LEADINGZERO
+#undef STBSP__INTMAX
+#undef STBSP__TRIPLET_COMMA
+#undef STBSP__NEGATIVE
+#undef STBSP__METRIC_SUFFIX
+#undef STBSP__NUMSZ
+#undef stbsp__chk_cb_bufL
+#undef stbsp__chk_cb_buf
+#undef stbsp__flush_cb
+#undef stbsp__cb_buf_clamp
+
+// ============================================================================
+// wrapper functions
+
+STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(sprintf)(char *buf, char const *fmt, ...)
+{
+ int result;
+ va_list va;
+ va_start(va, fmt);
+ result = STB_SPRINTF_DECORATE(vsprintfcb)(0, 0, buf, fmt, va);
+ va_end(va);
+ return result;
+}
+
+typedef struct stbsp__context {
+ char *buf;
+ int count;
+ int length;
+ char tmp[STB_SPRINTF_MIN];
+} stbsp__context;
+
+static char *stbsp__clamp_callback(const char *buf, void *user, int len)
+{
+ stbsp__context *c = (stbsp__context *)user;
+ c->length += len;
+
+ if (len > c->count)
+ len = c->count;
+
+ if (len) {
+ if (buf != c->buf) {
+ const char *s, *se;
+ char *d;
+ d = c->buf;
+ s = buf;
+ se = buf + len;
+ do {
+ *d++ = *s++;
+ } while (s < se);
+ }
+ c->buf += len;
+ c->count -= len;
+ }
+
+ if (c->count <= 0)
+ return c->tmp;
+ return (c->count >= STB_SPRINTF_MIN) ? c->buf : c->tmp; // go direct into buffer if you can
+}
+
+static char * stbsp__count_clamp_callback( const char * buf, void * user, int len )
+{
+ stbsp__context * c = (stbsp__context*)user;
+ (void) sizeof(buf);
+
+ c->length += len;
+ return c->tmp; // go direct into buffer if you can
+}
+
+STBSP__PUBLICDEF int STB_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va )
+{
+ stbsp__context c;
+
+ if ( (count == 0) && !buf )
+ {
+ c.length = 0;
+
+ STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__count_clamp_callback, &c, c.tmp, fmt, va );
+ }
+ else
+ {
+ int l;
+
+ c.buf = buf;
+ c.count = count;
+ c.length = 0;
+
+ STB_SPRINTF_DECORATE( vsprintfcb )( stbsp__clamp_callback, &c, stbsp__clamp_callback(0,&c,0), fmt, va );
+
+ // zero-terminate
+ l = (int)( c.buf - buf );
+ if ( l >= count ) // should never be greater, only equal (or less) than count
+ l = count - 1;
+ buf[l] = 0;
+ }
+
+ return c.length;
+}
+
+STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(snprintf)(char *buf, int count, char const *fmt, ...)
+{
+ int result;
+ va_list va;
+ va_start(va, fmt);
+
+ result = STB_SPRINTF_DECORATE(vsnprintf)(buf, count, fmt, va);
+ va_end(va);
+
+ return result;
+}
+
+STBSP__PUBLICDEF int STB_SPRINTF_DECORATE(vsprintf)(char *buf, char const *fmt, va_list va)
+{
+ return STB_SPRINTF_DECORATE(vsprintfcb)(0, 0, buf, fmt, va);
+}
+
+// =======================================================================
+// low level float utility functions
+
+#ifndef STB_SPRINTF_NOFLOAT
+
+// copies d to bits w/ strict aliasing (this compiles to nothing on /Ox)
+#define STBSP__COPYFP(dest, src) \
+ { \
+ int cn; \
+ for (cn = 0; cn < 8; cn++) \
+ ((char *)&dest)[cn] = ((char *)&src)[cn]; \
+ }
+
+// get float info
+static stbsp__int32 stbsp__real_to_parts(stbsp__int64 *bits, stbsp__int32 *expo, double value)
+{
+ double d;
+ stbsp__int64 b = 0;
+
+ // load value and round at the frac_digits
+ d = value;
+
+ STBSP__COPYFP(b, d);
+
+ *bits = b & ((((stbsp__uint64)1) << 52) - 1);
+ *expo = (stbsp__int32)(((b >> 52) & 2047) - 1023);
+
+ return (stbsp__int32)((stbsp__uint64) b >> 63);
+}
+
+static double const stbsp__bot[23] = {
+ 1e+000, 1e+001, 1e+002, 1e+003, 1e+004, 1e+005, 1e+006, 1e+007, 1e+008, 1e+009, 1e+010, 1e+011,
+ 1e+012, 1e+013, 1e+014, 1e+015, 1e+016, 1e+017, 1e+018, 1e+019, 1e+020, 1e+021, 1e+022
+};
+static double const stbsp__negbot[22] = {
+ 1e-001, 1e-002, 1e-003, 1e-004, 1e-005, 1e-006, 1e-007, 1e-008, 1e-009, 1e-010, 1e-011,
+ 1e-012, 1e-013, 1e-014, 1e-015, 1e-016, 1e-017, 1e-018, 1e-019, 1e-020, 1e-021, 1e-022
+};
+static double const stbsp__negboterr[22] = {
+ -5.551115123125783e-018, -2.0816681711721684e-019, -2.0816681711721686e-020, -4.7921736023859299e-021, -8.1803053914031305e-022, 4.5251888174113741e-023,
+ 4.5251888174113739e-024, -2.0922560830128471e-025, -6.2281591457779853e-026, -3.6432197315497743e-027, 6.0503030718060191e-028, 2.0113352370744385e-029,
+ -3.0373745563400371e-030, 1.1806906454401013e-032, -7.7705399876661076e-032, 2.0902213275965398e-033, -7.1542424054621921e-034, -7.1542424054621926e-035,
+ 2.4754073164739869e-036, 5.4846728545790429e-037, 9.2462547772103625e-038, -4.8596774326570872e-039
+};
+static double const stbsp__top[13] = {
+ 1e+023, 1e+046, 1e+069, 1e+092, 1e+115, 1e+138, 1e+161, 1e+184, 1e+207, 1e+230, 1e+253, 1e+276, 1e+299
+};
+static double const stbsp__negtop[13] = {
+ 1e-023, 1e-046, 1e-069, 1e-092, 1e-115, 1e-138, 1e-161, 1e-184, 1e-207, 1e-230, 1e-253, 1e-276, 1e-299
+};
+static double const stbsp__toperr[13] = {
+ 8388608,
+ 6.8601809640529717e+028,
+ -7.253143638152921e+052,
+ -4.3377296974619174e+075,
+ -1.5559416129466825e+098,
+ -3.2841562489204913e+121,
+ -3.7745893248228135e+144,
+ -1.7356668416969134e+167,
+ -3.8893577551088374e+190,
+ -9.9566444326005119e+213,
+ 6.3641293062232429e+236,
+ -5.2069140800249813e+259,
+ -5.2504760255204387e+282
+};
+static double const stbsp__negtoperr[13] = {
+ 3.9565301985100693e-040, -2.299904345391321e-063, 3.6506201437945798e-086, 1.1875228833981544e-109,
+ -5.0644902316928607e-132, -6.7156837247865426e-155, -2.812077463003139e-178, -5.7778912386589953e-201,
+ 7.4997100559334532e-224, -4.6439668915134491e-247, -6.3691100762962136e-270, -9.436808465446358e-293,
+ 8.0970921678014997e-317
+};
+
+#if defined(_MSC_VER) && (_MSC_VER <= 1200)
+static stbsp__uint64 const stbsp__powten[20] = {
+ 1,
+ 10,
+ 100,
+ 1000,
+ 10000,
+ 100000,
+ 1000000,
+ 10000000,
+ 100000000,
+ 1000000000,
+ 10000000000,
+ 100000000000,
+ 1000000000000,
+ 10000000000000,
+ 100000000000000,
+ 1000000000000000,
+ 10000000000000000,
+ 100000000000000000,
+ 1000000000000000000,
+ 10000000000000000000U
+};
+#define stbsp__tento19th ((stbsp__uint64)1000000000000000000)
+#else
+static stbsp__uint64 const stbsp__powten[20] = {
+ 1,
+ 10,
+ 100,
+ 1000,
+ 10000,
+ 100000,
+ 1000000,
+ 10000000,
+ 100000000,
+ 1000000000,
+ 10000000000ULL,
+ 100000000000ULL,
+ 1000000000000ULL,
+ 10000000000000ULL,
+ 100000000000000ULL,
+ 1000000000000000ULL,
+ 10000000000000000ULL,
+ 100000000000000000ULL,
+ 1000000000000000000ULL,
+ 10000000000000000000ULL
+};
+#define stbsp__tento19th (1000000000000000000ULL)
+#endif
+
+#define stbsp__ddmulthi(oh, ol, xh, yh) \
+ { \
+ double ahi = 0, alo, bhi = 0, blo; \
+ stbsp__int64 bt; \
+ oh = xh * yh; \
+ STBSP__COPYFP(bt, xh); \
+ bt &= ((~(stbsp__uint64)0) << 27); \
+ STBSP__COPYFP(ahi, bt); \
+ alo = xh - ahi; \
+ STBSP__COPYFP(bt, yh); \
+ bt &= ((~(stbsp__uint64)0) << 27); \
+ STBSP__COPYFP(bhi, bt); \
+ blo = yh - bhi; \
+ ol = ((ahi * bhi - oh) + ahi * blo + alo * bhi) + alo * blo; \
+ }
+
+#define stbsp__ddtoS64(ob, xh, xl) \
+ { \
+ double ahi = 0, alo, vh, t; \
+ ob = (stbsp__int64)xh; \
+ vh = (double)ob; \
+ ahi = (xh - vh); \
+ t = (ahi - xh); \
+ alo = (xh - (ahi - t)) - (vh + t); \
+ ob += (stbsp__int64)(ahi + alo + xl); \
+ }
+
+#define stbsp__ddrenorm(oh, ol) \
+ { \
+ double s; \
+ s = oh + ol; \
+ ol = ol - (s - oh); \
+ oh = s; \
+ }
+
+#define stbsp__ddmultlo(oh, ol, xh, xl, yh, yl) ol = ol + (xh * yl + xl * yh);
+
+#define stbsp__ddmultlos(oh, ol, xh, yl) ol = ol + (xh * yl);
+
+static void stbsp__raise_to_power10(double *ohi, double *olo, double d, stbsp__int32 power) // power can be -323 to +350
+{
+ double ph, pl;
+ if ((power >= 0) && (power <= 22)) {
+ stbsp__ddmulthi(ph, pl, d, stbsp__bot[power]);
+ } else {
+ stbsp__int32 e, et, eb;
+ double p2h, p2l;
+
+ e = power;
+ if (power < 0)
+ e = -e;
+ et = (e * 0x2c9) >> 14; /* %23 */
+ if (et > 13)
+ et = 13;
+ eb = e - (et * 23);
+
+ ph = d;
+ pl = 0.0;
+ if (power < 0) {
+ if (eb) {
+ --eb;
+ stbsp__ddmulthi(ph, pl, d, stbsp__negbot[eb]);
+ stbsp__ddmultlos(ph, pl, d, stbsp__negboterr[eb]);
+ }
+ if (et) {
+ stbsp__ddrenorm(ph, pl);
+ --et;
+ stbsp__ddmulthi(p2h, p2l, ph, stbsp__negtop[et]);
+ stbsp__ddmultlo(p2h, p2l, ph, pl, stbsp__negtop[et], stbsp__negtoperr[et]);
+ ph = p2h;
+ pl = p2l;
+ }
+ } else {
+ if (eb) {
+ e = eb;
+ if (eb > 22)
+ eb = 22;
+ e -= eb;
+ stbsp__ddmulthi(ph, pl, d, stbsp__bot[eb]);
+ if (e) {
+ stbsp__ddrenorm(ph, pl);
+ stbsp__ddmulthi(p2h, p2l, ph, stbsp__bot[e]);
+ stbsp__ddmultlos(p2h, p2l, stbsp__bot[e], pl);
+ ph = p2h;
+ pl = p2l;
+ }
+ }
+ if (et) {
+ stbsp__ddrenorm(ph, pl);
+ --et;
+ stbsp__ddmulthi(p2h, p2l, ph, stbsp__top[et]);
+ stbsp__ddmultlo(p2h, p2l, ph, pl, stbsp__top[et], stbsp__toperr[et]);
+ ph = p2h;
+ pl = p2l;
+ }
+ }
+ }
+ stbsp__ddrenorm(ph, pl);
+ *ohi = ph;
+ *olo = pl;
+}
+
+// given a float value, returns the significant bits in bits, and the position of the
+// decimal point in decimal_pos. +/-INF and NAN are specified by special values
+// returned in the decimal_pos parameter.
+// frac_digits is absolute normally, but if you want from first significant digits (got %g and %e), or in 0x80000000
+static stbsp__int32 stbsp__real_to_str(char const **start, stbsp__uint32 *len, char *out, stbsp__int32 *decimal_pos, double value, stbsp__uint32 frac_digits)
+{
+ double d;
+ stbsp__int64 bits = 0;
+ stbsp__int32 expo, e, ng, tens;
+
+ d = value;
+ STBSP__COPYFP(bits, d);
+ expo = (stbsp__int32)((bits >> 52) & 2047);
+ ng = (stbsp__int32)((stbsp__uint64) bits >> 63);
+ if (ng)
+ d = -d;
+
+ if (expo == 2047) // is nan or inf?
+ {
+ *start = (bits & ((((stbsp__uint64)1) << 52) - 1)) ? "NaN" : "Inf";
+ *decimal_pos = STBSP__SPECIAL;
+ *len = 3;
+ return ng;
+ }
+
+ if (expo == 0) // is zero or denormal
+ {
+ if (((stbsp__uint64) bits << 1) == 0) // do zero
+ {
+ *decimal_pos = 1;
+ *start = out;
+ out[0] = '0';
+ *len = 1;
+ return ng;
+ }
+ // find the right expo for denormals
+ {
+ stbsp__int64 v = ((stbsp__uint64)1) << 51;
+ while ((bits & v) == 0) {
+ --expo;
+ v >>= 1;
+ }
+ }
+ }
+
+ // find the decimal exponent as well as the decimal bits of the value
+ {
+ double ph, pl;
+
+ // log10 estimate - very specifically tweaked to hit or undershoot by no more than 1 of log10 of all expos 1..2046
+ tens = expo - 1023;
+ tens = (tens < 0) ? ((tens * 617) / 2048) : (((tens * 1233) / 4096) + 1);
+
+ // move the significant bits into position and stick them into an int
+ stbsp__raise_to_power10(&ph, &pl, d, 18 - tens);
+
+ // get full as much precision from double-double as possible
+ stbsp__ddtoS64(bits, ph, pl);
+
+ // check if we undershot
+ if (((stbsp__uint64)bits) >= stbsp__tento19th)
+ ++tens;
+ }
+
+ // now do the rounding in integer land
+ frac_digits = (frac_digits & 0x80000000) ? ((frac_digits & 0x7ffffff) + 1) : (tens + frac_digits);
+ if ((frac_digits < 24)) {
+ stbsp__uint32 dg = 1;
+ if ((stbsp__uint64)bits >= stbsp__powten[9])
+ dg = 10;
+ while ((stbsp__uint64)bits >= stbsp__powten[dg]) {
+ ++dg;
+ if (dg == 20)
+ goto noround;
+ }
+ if (frac_digits < dg) {
+ stbsp__uint64 r;
+ // add 0.5 at the right position and round
+ e = dg - frac_digits;
+ if ((stbsp__uint32)e >= 24)
+ goto noround;
+ r = stbsp__powten[e];
+ bits = bits + (r / 2);
+ if ((stbsp__uint64)bits >= stbsp__powten[dg])
+ ++tens;
+ bits /= r;
+ }
+ noround:;
+ }
+
+ // kill long trailing runs of zeros
+ if (bits) {
+ stbsp__uint32 n;
+ for (;;) {
+ if (bits <= 0xffffffff)
+ break;
+ if (bits % 1000)
+ goto donez;
+ bits /= 1000;
+ }
+ n = (stbsp__uint32)bits;
+ while ((n % 1000) == 0)
+ n /= 1000;
+ bits = n;
+ donez:;
+ }
+
+ // convert to string
+ out += 64;
+ e = 0;
+ for (;;) {
+ stbsp__uint32 n;
+ char *o = out - 8;
+ // do the conversion in chunks of U32s (avoid most 64-bit divides, worth it, constant denomiators be damned)
+ if (bits >= 100000000) {
+ n = (stbsp__uint32)(bits % 100000000);
+ bits /= 100000000;
+ } else {
+ n = (stbsp__uint32)bits;
+ bits = 0;
+ }
+ while (n) {
+ out -= 2;
+ *(stbsp__uint16 *)out = *(stbsp__uint16 *)&stbsp__digitpair.pair[(n % 100) * 2];
+ n /= 100;
+ e += 2;
+ }
+ if (bits == 0) {
+ if ((e) && (out[0] == '0')) {
+ ++out;
+ --e;
+ }
+ break;
+ }
+ while (out != o) {
+ *--out = '0';
+ ++e;
+ }
+ }
+
+ *decimal_pos = tens;
+ *start = out;
+ *len = e;
+ return ng;
+}
+
+#undef stbsp__ddmulthi
+#undef stbsp__ddrenorm
+#undef stbsp__ddmultlo
+#undef stbsp__ddmultlos
+#undef STBSP__SPECIAL
+#undef STBSP__COPYFP
+
+#endif // STB_SPRINTF_NOFLOAT
+
+// clean up
+#undef stbsp__uint16
+#undef stbsp__uint32
+#undef stbsp__int32
+#undef stbsp__uint64
+#undef stbsp__int64
+#undef STBSP__UNALIGNED
+
+#endif // STB_SPRINTF_IMPLEMENTATION
+
+/*
+------------------------------------------------------------------------------
+This software is available under 2 licenses -- choose whichever you prefer.
+------------------------------------------------------------------------------
+ALTERNATIVE A - MIT License
+Copyright (c) 2017 Sean Barrett
+Permission is hereby granted, free of charge, to any person obtaining a copy of
+this software and associated documentation files (the "Software"), to deal in
+the Software without restriction, including without limitation the rights to
+use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is furnished to do
+so, subject to the following conditions:
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+------------------------------------------------------------------------------
+ALTERNATIVE B - Public Domain (www.unlicense.org)
+This is free and unencumbered software released into the public domain.
+Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
+software, either in source code form or as a compiled binary, for any purpose,
+commercial or non-commercial, and by any means.
+In jurisdictions that recognize copyright laws, the author or authors of this
+software dedicate any and all copyright interest in the software to the public
+domain. We make this dedication for the benefit of the public at large and to
+the detriment of our heirs and successors. We intend this dedication to be an
+overt act of relinquishment in perpetuity of all present and future rights to
+this software under copyright law.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+------------------------------------------------------------------------------
+*/